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Central question

If leptoquarks exist,
could we detect them at future hadron colliders?



Outline

+ Motivation: Why future colliders?
Why leptoquarks?

+ Our strategy and methodology: simulation tools.

+ Projections for future colliders: results.



Future colliders

How can we detect new physics beyond the
standard model?

Higher precision Higher energy
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High energy pp colliders
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High energy pp colliders
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High energy pp colliders

Proposals for ee colliders also exist e.g. FCC-ee.

These provide a much cleaner environment with

reduced background noise, but do not have the same
energy reach.

pp colliders have the potential to reach high centre of
Mmass energies

- better prospects for direct detection of TeV
scale new physics.



Leptoquarks



Leptoquarks as solutions to the neutral
current B anomalies

LHCDb, Belle, BaBar: measured discrepancies from

the SM at the level of 2 — 30 in observables including:

Ry (+) Pé BR(B) — u"pu™)
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Leptoquarks as solutions to the neutral
current B anomalies

* Theoretical predictions have low uncertainties
due to lepton flavour universality in the SM:

BR(B — K™ putp™)
BR(B — K*ete)

Ry ) =
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Leptoquarks as solutions to the neutral
current B anomalies

* Theoretical predictions have low uncertainties
due to lepton flavour universality in the SM:

BR(B — K™ putp™)
BR(B — K*ete)

Ry ) =

» All observables are related to b — s
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Leptoquarks as solutions to the neutral
current B anomalies

AG
73

Vis Vo

e 2ZCO + h.c.

Hepr =

Fits to flavour anomaly data prefer new physics in

Orr = (57, PLb)(py" Prp)

with Crp = —0.5370705 — 6.50 from the SM.

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434.
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Leptoquarks as solutions to the neutral
current B anomalies
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Leptoquarks as solutions to the neutral
current B anomalies

Ybpu
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_ 1
Sg . (3, 3, g)
LO under SU(3) x SU(2) x U(1)

— only qrl;, couplings

— scalar LQ

a=1,2,3
L = quqLZT TalLsg Yig & 3 X 3 matrix

in flavour space. .



Leptoquarks as solutions to the neutral
current B anomalies

Ybpu

|

LQ Crr Vi Viiagm

YouYsy = 9 rar2

2
mLQ

16



Central question

If LQs exist and are responsible for these anomalies,
could we detect them at future hadron colliders?
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Y2,

Leptoquark parameter space
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Constraints on leptoquarks
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Constraints from:

LHC searches for LQ
palr production

ATLAS:1906.08983 CMS:1808.05082

Perturbative unitarity

Neutral B meson mixing:

mrq S 70 TeV for LQ
solutions to the B anomalies

Luzioa, Kirk, Lenz, Rauh: 1909.11087

How far into this unconstrained parameter space can we
expect future colliders to probe? 19



LQ search
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LQ production mechanisms
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LQ production mechanisms

g S3
Independent of Yiq-
. Dominant production
mechanism for small couplings.
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LQ decay channel

g
Sy =
g T~
53\<
g

We select events containing: 2 muons
> 2 jets

with no flavour tagging.
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Methodology



Strategy

Sensitivity to a LQ signal is driven by the size of the
SM background.
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Strategy

Produce a detector-level simulation of the
standard model background:

+ Madgraph5 at LO for matrix element event
generation

+ Pythia8 for parton showering
+ Delphes3 for detector simulation

Compare with simulations of a leptoquark signal.

Determine the mass exclusion and the discovery
potential.
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Future colliders

Vs [TeV] | £ [ab™!]
HL-LHC 14 3
HE-LHC 27 15
FCC-hh 100 20




SM Background
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SM Background

Drell-Yan + 2 jets
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SM Background

Top pair production
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SM Background

Top pair production
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Simulations

o ATLAS « Data
ATLAS g 10°F 13 TeV,32fb" Wit s
search for - ujj, SR DY + jets
d : @ 102 Diboson =
second generation - I Single top
leptoquarks. O oo @ W= .
. . 1 .
Use this to validate = By | =g . ;
: : -1 _
our simulation 19 @22
methods. S _.//_////7
e 10 W Z /
§ o ji %

1000
mmn [GeV]
ATLAS Collaboration, M. Aaboud et. al., Search for scalar leptoquarks in pp

collisions at /s = 13 TeV with the ATLAS experiment, New J. Phys. 18 (2016),
no. 9 093016 [1605.06035]
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LQ search

Model our search on ATLAS and CMS searches for
2nd generation leptoquarks.

i Define: muin (1, j) = min[m(u1, j1), m(u2, j2)]

2

i
Sy == Minimise i)~ m. )
g 1

Search for a resonance in this LQ invariant mass
distribution.
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Simulation methods

Match multijet
samples using MLM
matching

Bias event generation
to understand the
shape of the tail

Remove interference
between SM processes

>
o ATLAS « Data
g 10°F 13 Tev,3.21b Bl
g upjj, SR [ 1DY + jets
I 102 [ ] Diboson
S = = I Single top
it )] B LQ 1.1 TeV
1
10

i’
§

mmnin [GeV]
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Validating simulation methods
104_§Signal region, y/s = 13 TeV, L = 3.2 fh!
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Future colliders

+ Redefine the signal region:

- scaleup cutson pr,M,,,St by +/s/(13 TeV)
to account for higher energies and heavier LQs.

- modify cuts on |n;|, 1. at the HE-LHC and FCC-
hh to account for differences in detectors.

+ Redefine detector configuration in Delphes3.
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Events per bin

HL-LHC :\/s = 14 TeV.L = 3 ab™!
tt
DY

Wit

WWw
mrgo = 1.8 TeV

Allanach,Corbett and Madigan 2020
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Events per bin
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Events per bin

0

FCC-hh :y/s = 100 TeV,L£ =20 ab™*
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Allanach,Corbett and Madigan 2020
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Signal simulations

Recall:

. CrooVwViaem o
yb,uys,u —

mi,qQ Crp = —0.531_8:83

22

We switch on Ysn = Ysp and set all other couplings to
Zero.
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Signal simulations

Recall:

. CrooVwViaem o
yb,uyslu T

mLQ CLL — —O.53t8:8§

22

We switch on Ysn = Ysp and set all other couplings to
Zero.

Unequal Yuvu s Ysp Will lead to a similar signatures as we
are not b-tagging the jets.

Switching on other couplings will increase the possible
decay channels and options for LQ discovery.
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Sensitivity



Sensitivity

We quantify sensitivity of a future collider by asking two questions:

Exclusion limits Discovery potential
What LQ masses can we What LQ masses can we
exclude? discover?

95% CL 7 = 50

» = 0.05 p=29x 10"
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Exclusion limits: combined projections
Mass excluded at 95% CL
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Discovery potential
At the HE-LHC,
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Discovery potential: combined
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Conclusions

Mass excluded at 95% CL
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+ Estimated the sensitivity of future colliders to LQ
solutions to the neutral current B anomalies.
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LHC-Runll :\/s = 13 TeV,£ = 140 fb~*

g104 ~
3 E S
S DY &
—10 Uity =
?) . s
> - — 1. 3

2

T
0 200 500 750 1000 1250 1500

mmin(:“a J ) [Ge\/]

49



LQ search

Model our search on ATLAS and CMS searches for
2nd generation leptoquarks.

i Define: muin (1, j) = min[m(u1, j1), m(u2, j2)]

2

i
Sy == Minimise i)~ m. )
g 1

Search for a resonance in this LQ invariant mass
distribution.
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Signal
simulations

Spread of LQ events
IS due to:

* momentum lost
during parton
showering

* smearing due to
detector efficiency
and
mismeasurement

HE-LHC :/s =27 TeV,L£ = 15 ab™*

= S
O — DY §
T10* =t . [
= e S
= o
= = . :
< 10 35TV =
— m = 0. (@ 2
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1072 E

=

— -

0 1000 2000 3000
Muin(pt, 7) [GeV]

This shape Is determined by the
resolution. Any narrow width
LQ would produce the same
shape.
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Exclusion limits: validating our methods

V5 =13TeV, £L =32 b limits at 95% CL
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Excludes LQ masses up to mrg ~ 1.15 TeV
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Exclusion limits: Projections for LHC Run ||

Limits on o x BR at 95% CL at /s = 13 TeV, £ = 140 fb ™"

i — onLo X BR
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>b< 10~ Expected 420

1()_6 Allanach,Corbett and Madigan 2020
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Exclusion limits: Projections for HL-LHC

1

102 Limits on o x BR at 95% CL at /s = 14 TeV, £L =3 ab™*
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Exclusion limits: Projections for HE-LHC

Limits on o x BR at 95% CL at /s =27 TeV, £ =15 ab™*
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Exclusion limits: Projections for FCC-hh

Limits on o x BR at 95% CL at /s = 100 TeV, £ =20 ab™"
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+20

Allanach,Corbett and Madigan 2020
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Wide LQs

+ We can apply our limits to other narrow LQ
scenarios with I'/mpq < 0.01

+ What about wide LQs?
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Wide LQs

Wide LQ resonances at /s = 27 TeV, £L =15 ab™!
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Wide LQs

Recall: [ = ‘qu, TLQ

For wide LQs we take Yy = Ysu as before,
scaling them up to reach

I['/mLo = 0.1,0.2,0.5
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Limits at 95 % CL on wide resonances at 14 TeV. 3 ab ™"

= —  Limits at 95% CL
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Wide LQs

9

Palr production is no
onger dominated by Ylq
iIndependent diagrams

o X BR Is Increased by
contributions from Yiq
dependent diagrams

61



Limits at 95 % CL on wide resonances at 14 TeV. 3 ab ™"
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101 Limits at 95 % CL on wide resonances at 27 TeV, 15 ab™!
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1 O_gLimits at 95 % CL on wide resonances at 100 TeV, 20 ab™!
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Simulations - validation

Preselection region at /s = 13 TeV, £ =3.2 fb!
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Overcounting

DY + 1jet W PS | 2y
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Overcounting

PS

PS

DY + 1 jet 0
Z[y*
DY + 2 |ets

Z/v*

Z/v*
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Overcounting

MLM matching used to combine samples of different jet multiplicity.
Depends on input parameters: Tqcut, Qi

- different for each process and each signal region.

- these are cuts on jets,quarks and gluons with dimensions of energy.
These are unphysical parameters:

- confirm that observables do not depend on xqcut, cht
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Previous work:

Sensitivity to leptoquarks is driven
by the size of the standard model
background.

Extrapolate from 13 TeV LHC
performance to future colliders,
assuming no changes to detector
performance

l.e. acceptance and efficiency
remain the same.

Allanach, Gripaios, You: 1710.06363

95% CL lim. 2nd gen. leptoquark pair production
102\ - — FCC-hh100TeV,lab! |

i -~ FCC-hh 100 TeV, 10 ab~! |
T s oxio x BR FCC-hh 100 TeV ||

o x BR(upgj) [pb]
(-
o
NN

______

5 10 15 20

Find the FCC-hh at 100 TeV, 10 ab™*

is sensitive to mp,q < 12 TeV
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Previous work:

Sensitivity to new physics is
driven by the size of the standard
model background.

Produce a detailed understanding
of the standard model
background using Monte Carlo
simulations.

Account for differences in current
and future detectors using
Delphes for detector simulation.

events/ 1 TeV

Helsens, Jamin, Mangano, Rizzo,
Selvaggi: 1902.11217

10°

FCC-hh Simulation (Delphes)

IIIIIII| I IIIIIII| I IIIIIII| I TTTTH

IIII|IIII|IIII|IIII|IIII|

—m,. =20 TeV
\s =100 TeV VY (V=Z/W) :
L =30 ab"_ Bl Vj (V=Z/W)
Z .., = tt Bl QCD

tt

|

T 1]

] lllllll| ] lllllll| ] lllllll| ] lllllll| ] lllllll| ] lllllll|

| | I —

10 15 20 25

30
m,. [TeV]
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Biasing event generation

By default Madgraph generates unweighted events.

pt(jetl)
All events have the same _
weight. —
The number of eventsina & E
region of phase spaceis &
proportional to the ; 3
probability in this region. S ﬂlﬂﬂlf

0 100 200 300 400 500

From Madgraph5 online tutorial LOEventGenerationBias
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Biasing event generation

Generating unweighted events:

Accept a phase space
point I and generate
the event with
probability

do /dx
(do /dx) maz

d_a
dx

High
acceptance
probability

max

Low
acceptance
probability -



Biasing event generation

Introduce a bias function b(xz) and accept/reject with probability

maxr

High High x
acceptance acceptance

probability probability

(g_gb(x))max
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Biasing event generation

We must reweight pt(jet1)
each event using the FT T T[T T T[T

bias to reproduce the

physical distribution.

Then the overall shape i"

or values of physical @

observables are not :

modified. ot el L e

0 100 200 300 400 500
pt

From Madgraph5 online tutorial LOEventGenerationBias
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Biasing event generation

We define our bias function as b(x) o P° where

tt + 0,1]

DY+0,1,2,3] P? = (pu, + Duy)’
— (p,ul _I_p,u2 _I_pjl _I_pJQ)

Wt + 0, 2 (Ppy + Puy + iy )°

WW + 0,1 ,2] — (plul —|—plu2)2

2
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Muon isolation

+ We use the Delphes3 detector configurations for
ATLAS, HL-LHC, HE-LHC and FCC-hh, only
modifying muon isolation:

solated if »  pr < pp*”

cone

/6



Muon isolation

We completely remove the requirement of muon
isolation at the HE-LHC and FCC-hh.

This results in overestimating the SM background.
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Muon isolation

We completely remove the requirement of muon
isolation at the HE-LHC and FCC-hh.

This results in overestimating the SM background.

Why? Following the same reasohing as Helsens, Jamin,
Mangano, Rizzo, Selvaggi: 1902.11217

The selection efficiency is found to be highly

dependent on the muon isolation parameters, in
particular ¢t production.
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