Can you regularise gravity on a supermanifold?

Matthew P. Kellett, Tim R. Morris

High Energy Physics Group, School of Physics and Astronomy, University of Southampton

18th December 2019

Outline

- Introduction and motivation

Outline

- Introduction and motivation
- Outline of $\operatorname{SU}(N \mid N)$ case

Outline

- Introduction and motivation
- Outline of $S U(N \mid N)$ case
- Supermanifolds

Outline

- Introduction and motivation
- Outline of $S U(N \mid N)$ case
- Supermanifolds
- Results

Outline

- Introduction and motivation
- Outline of $S U(N \mid N)$ case
- Supermanifolds
- Results
- Conclusion and outlook

Introduction and motivation

- We wish to construct a renormalization group flow which preserves the diffeomorphism invariance of gravity.

Introduction and motivation

- We wish to construct a renormalization group flow which preserves the diffeomorphism invariance of gravity.
- We are inspired by, e.g., arXiv: hep-th/0106258 (Arnone, Kubyshin, Morris, Tighe) where something similar is done in gauge theory.

Introduction and motivation

- We wish to construct a renormalization group flow which preserves the diffeomorphism invariance of gravity.
- We are inspired by, e.g., arXiv: hep-th/0106258 (Arnone, Kubyshin, Morris, Tighe) where something similar is done in gauge theory.
- This is done by extending the $S U(N)$ group to the supergroup SU($N \mid N$).

Introduction and motivation

- We wish to construct a renormalization group flow which preserves the diffeomorphism invariance of gravity.
- We are inspired by, e.g., arXiv: hep-th/0106258 (Arnone, Kubyshin, Morris, Tighe) where something similar is done in gauge theory.
- This is done by extending the $S U(N)$ group to the supergroup $S U(N \mid N)$.
- The analogous thing to do in gravity then is to extend the diffeomorphism group (Diff) to the superdiffeomorphism group (SDiff). This involves extending the spacetime to include Grassmann directions.

$S U(N \mid N)$

- First we need to define what is meant by $\operatorname{SU}(N \mid N)$.

$S U(N \mid N)$

- First we need to define what is meant by $S U(N \mid N)$.
- The most important thing to note is that the gauge field is now of the form

$$
A_{\mu}=\left(\begin{array}{cc}
\mathcal{A}_{\mu}^{1} & B_{\mu} \\
\bar{B}_{\mu} & \mathcal{A}_{\mu}^{2}
\end{array}\right)+\mathcal{A}_{\mu}^{0} \mathbb{I} .
$$

- Here, \mathcal{A}_{μ}^{i} is bosonic and B_{μ} is fermionic.

$S U(N \mid N)$

- First we need to define what is meant by $\operatorname{SU}(N \mid N)$.
- The most important thing to note is that the gauge field is now of the form

$$
A_{\mu}=\left(\begin{array}{cc}
\mathcal{A}_{\mu}^{1} & B_{\mu} \\
\bar{B}_{\mu} & \mathcal{A}_{\mu}^{2}
\end{array}\right)+\mathcal{A}_{\mu}^{0} \mathbb{I} .
$$

- Here, \mathcal{A}_{μ}^{i} is bosonic and B_{μ} is fermionic.
- \mathcal{A}_{μ}^{0} parametrises a $U(1)$ subgroup but decouples from everything else, so is ignored here.

Breaking $\operatorname{SU}(N \mid N)$

- We introduce a superscalar field

$$
\mathcal{C}=\left(\begin{array}{cc}
C^{1} & D \\
\bar{D} & C^{2}
\end{array}\right)
$$

with C^{i} bosonic and D fermionic.

Breaking $\operatorname{SU}(N \mid N)$

- We introduce a superscalar field

$$
\mathcal{C}=\left(\begin{array}{cc}
C^{1} & D \\
\bar{D} & C^{2}
\end{array}\right)
$$

with C^{i} bosonic and D fermionic.

- This picks up an expectation value $\langle\mathcal{C}\rangle \propto \sigma_{3}$ and thus spontaneously breaks $S U(N \mid N)$ to $S U(N) \times S U(N)$.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $\operatorname{SU}(N)$ gauge field in the normal way.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $S U(N)$ gauge field in the normal way.
- \mathcal{A}_{μ}^{2} is similar, but has the wrong sign kinetic term. This can lead to unitarity violations if not treated properly.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $S U(N)$ gauge field in the normal way.
- \mathcal{A}_{μ}^{2} is similar, but has the wrong sign kinetic term. This can lead to unitarity violations if not treated properly.
- Both are massless.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $S U(N)$ gauge field in the normal way.
- \mathcal{A}_{μ}^{2} is similar, but has the wrong sign kinetic term. This can lead to unitarity violations if not treated properly.
- Both are massless.
- All other degrees of freedom gain masses proportional to the RG scale, and hence decouple in the physical limit.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $S U(N)$ gauge field in the normal way.
- \mathcal{A}_{μ}^{2} is similar, but has the wrong sign kinetic term. This can lead to unitarity violations if not treated properly.
- Both are massless.
- All other degrees of freedom gain masses proportional to the RG scale, and hence decouple in the physical limit.
- To deal with \mathcal{A}_{μ}^{2}, we first note that it has no bare interactions with \mathcal{A}_{μ}^{1} as they live in different copies of $S U(N)$.

$S U(N) \times S U(N)$

- \mathcal{A}_{μ}^{1} behaves as a $S U(N)$ gauge field in the normal way.
- \mathcal{A}_{μ}^{2} is similar, but has the wrong sign kinetic term. This can lead to unitarity violations if not treated properly.
- Both are massless.
- All other degrees of freedom gain masses proportional to the RG scale, and hence decouple in the physical limit.
- To deal with \mathcal{A}_{μ}^{2}, we first note that it has no bare interactions with \mathcal{A}_{μ}^{1} as they live in different copies of $S U(N)$.
- Then we see that the lowest order coupling is

$$
\operatorname{str}\left(\left(\mathcal{F}^{1}\right)^{2}\right) \operatorname{str}\left(\left(\mathcal{F}^{2}\right)^{2}\right)
$$

which is irrelevant, so can be ignored.

Why use $\operatorname{SU}(N \mid N)$?

- RG properties are much nicer than those of $S U(N)$.

Why use $\operatorname{SU}(N \mid N)$?

- RG properties are much nicer than those of $S U(N)$.
- Compare with $(\mathcal{N}=4)$ SUSY, where the symmetry implies "non-renormalization" theorems for some of the couplings.

Why use $\operatorname{SU}(N \mid N)$?

- RG properties are much nicer than those of $S U(N)$.
- Compare with $(\mathcal{N}=4)$ SUSY, where the symmetry implies "non-renormalization" theorems for some of the couplings.
- The underlying reason for the improved RG behaviour this is case is the "supertrace mechanism".

Why use $\operatorname{SU}(N \mid N)$?

- RG properties are much nicer than those of $\operatorname{SU}(N)$.
- Compare with $(\mathcal{N}=4)$ SUSY, where the symmetry implies "non-renormalization" theorems for some of the couplings.
- The underlying reason for the improved RG behaviour this is case is the "supertrace mechanism".

$$
\operatorname{tr}\left(\mathbb{I}_{N}\right)=N \quad \text { vs. } \quad \operatorname{str}\left(\mathbb{I}_{2 n}\right)=\operatorname{tr}\left(\sigma_{3} \mathbb{I}_{2 n}\right)=0
$$

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation
- $S U(N) \leftrightarrow$ Diff

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation
- SU(N) \leftrightarrow Diff
- $S U(N \mid N) \leftrightarrow$ SDiff

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation
- SU(N) \leftrightarrow Diff
- $\operatorname{SU}(N \mid N) \leftrightarrow$ SDiff
- Since gravity is a theory of geometry, this involves expanding our manifold to a supermanifold.

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation
- SU(N) \leftrightarrow Diff
- $\operatorname{SU}(N \mid N) \leftrightarrow$ SDiff
- Since gravity is a theory of geometry, this involves expanding our manifold to a supermanifold.
- Begs the question: how to define a supermanifold?

Gauge theory to gravity

- Gauge field \leftrightarrow metric fluctuation
- $\operatorname{SU}(N) \leftrightarrow$ Diff
- $\operatorname{SU}(N \mid N) \leftrightarrow$ SDiff
- Since gravity is a theory of geometry, this involves expanding our manifold to a supermanifold.
- Begs the question: how to define a supermanifold?
- Mathematicians tend to define these in terms of sheafs, categories...

Supermanifolds

- We take a more pragmatic approach. We write points on our (4,4)-supermanifold as

$$
x^{A}=\binom{x^{\mu}}{\theta^{a}}
$$

where $\mu, a=1,2,3,4$ and $A=1, \ldots, 8$, and θ^{a} fermionic.

Supermanifolds

- We take a more pragmatic approach. We write points on our (4,4)-supermanifold as

$$
x^{A}=\binom{x^{\mu}}{\theta^{a}}
$$

where $\mu, a=1,2,3,4$ and $A=1, \ldots, 8$, and θ^{a} fermionic.

- This is probably best thought of as a principal bundle over the "base" manifold \mathcal{M}. That is, like \mathcal{M} but with some "fuzziness" around it.

Problems with supermanifolds

- There are myriad problems with formulating gravity on a supermanifold, almost all of which arise from the non-commuting coordinates.

Problems with supermanifolds

- There are myriad problems with formulating gravity on a supermanifold, almost all of which arise from the non-commuting coordinates.
- Left/right indices: $X^{A} \neq{ }^{A} X$ - index placement tells us which side the Jacobian goes under coordinate transformation.

Problems with supermanifolds

- There are myriad problems with formulating gravity on a supermanifold, almost all of which arise from the non-commuting coordinates.
- Left/right indices: $X^{A} \neq{ }^{A} X$ - index placement tells us which side the Jacobian goes under coordinate transformation.
- In addition, $g_{A B} g^{B C}$ does NOT result in the Kronecker delta. The correct analogue is $A g_{B}{ }^{B} g^{C}={ }_{A} \delta^{C}$.

Problems with supermanifolds

- There are myriad problems with formulating gravity on a supermanifold, almost all of which arise from the non-commuting coordinates.
- Left/right indices: $X^{A} \neq{ }^{A} X$ - index placement tells us which side the Jacobian goes under coordinate transformation.
- In addition, $g_{A B} g^{B C}$ does NOT result in the Kronecker delta. The correct analogue is $A g_{B}^{B} g^{C}={ }_{A} \delta^{C}$.
- $g_{A B, C}=g_{A B} \overleftarrow{\partial_{C}} \neq \partial_{C} g_{A B}$. This means one has to be careful about the definitions of Christoffel symbols and the Riemann tensor.

Problems with supermanifolds

- There are myriad problems with formulating gravity on a supermanifold, almost all of which arise from the non-commuting coordinates.
- Left/right indices: $X^{A} \neq{ }^{A} X$ - index placement tells us which side the Jacobian goes under coordinate transformation.
- In addition, $g_{A B} g^{B C}$ does NOT result in the Kronecker delta. The correct analogue is $A g_{B}^{B} g^{C}={ }_{A} \delta^{C}$.
- $g_{A B, C}=g_{A B} \overleftarrow{\partial_{C}} \neq \partial_{C} g_{A B}$. This means one has to be careful about the definitions of Christoffel symbols and the Riemann tensor.
- Lesson: BE CAREFUL - can't assume formulae carry over in a simple way.

Plan of attack

- First, we define our background metric and fluctuation.

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.
- Taylor expand the superfields in terms of θ-coordinates.

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.
- Taylor expand the superfields in terms of θ-coordinates.
- Fix gauge.

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.
- Taylor expand the superfields in terms of θ-coordinates.
- Fix gauge.
- Regularise the theory

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.
- Taylor expand the superfields in terms of θ-coordinates.
- Fix gauge.
- Regularise the theory, solve quantum gravity

Plan of attack

- First, we define our background metric and fluctuation.
- To find the degrees of freedom of this theory, need to expand in gravitational coupling to second order to find propagators.
- Taylor expand the superfields in terms of θ-coordinates.
- Fix gauge.
- Regularise the theory, solve quantum gravity, win the lottery, world peace etc...

Defining the theory

- We take our supermetric to be

$$
g_{A B}=\left(\begin{array}{ll}
g_{\mu \nu} & g_{\mu a} \\
g_{b \nu} & g_{a b}
\end{array}\right)
$$

which satisfies $g_{B A}=(-1)^{A B} g_{A B}$.

Defining the theory

- We take our supermetric to be

$$
g_{A B}=\left(\begin{array}{ll}
g_{\mu \nu} & g_{\mu a} \\
g_{b \nu} & g_{a b}
\end{array}\right)
$$

which satisfies $g_{B A}=(-1)^{A B} g_{A B}$.

- Choose a background metric

$$
\bar{\delta}_{A B}=\left(\begin{array}{cc}
\delta_{\mu \nu} & 0 \\
0 & \epsilon_{a b}
\end{array}\right)
$$

with $\epsilon_{a b}$ arbitrary (potential for symmetry breaking?)

Linearised theory

- We write $g_{A B}=\bar{\delta}_{A B}+\kappa h_{A B}$.

Linearised theory

- We write $g_{A B}=\bar{\delta}_{A B}+\kappa h_{A B}$.
- We want the action

$$
S=\int d^{8} x \sqrt{g} R
$$

to second order in κ.

Linearised theory

- We write $g_{A B}=\bar{\delta}_{A B}+\kappa h_{A B}$.
- We want the action

$$
S=\int d^{8} x \sqrt{g} R
$$

to second order in κ.

- Then $\sqrt{g}=1+\frac{\kappa}{2}\left(h^{\mu}{ }_{\mu}-h^{a}{ }_{a}\right.$) to $O(\kappa)$ (all we need as there is no $O(1)$ part of R).

Linearised theory

- We write $g_{A B}=\bar{\delta}_{A B}+\kappa h_{A B}$.
- We want the action

$$
S=\int d^{8} x \sqrt{g} R
$$

to second order in κ.

- Then $\sqrt{g}=1+\frac{\kappa}{2}\left(h^{\mu}{ }_{\mu}-h^{a}{ }_{a}\right)$ to $O(\kappa)$ (all we need as there is no $O(1)$ part of R).
- Calculating R is significantly harder... use FORM.

Results from FORM (1/2)

$$
\begin{aligned}
\mathcal{L}_{b b}= & \frac{1}{4} \partial_{\rho} h^{\mu}{ }_{\mu} \partial_{\rho} h_{\nu}^{\nu}+\frac{1}{2} h_{\rho}^{\rho} \partial_{\mu} \partial_{\nu} h^{\mu \nu}-\frac{1}{4} \partial_{\rho} h_{\mu \nu} \partial^{\rho} h^{\mu \nu}+\frac{1}{2} \partial^{\nu} h_{\mu \nu} \partial_{\rho} h^{\mu \rho} \\
& -\frac{1}{4} \partial_{a} h^{\mu}{ }_{\mu} \partial^{a} h_{\nu}^{\nu}+\frac{1}{4} \partial_{a} h_{\mu \nu} \partial^{a} h^{\mu \nu} \\
\mathcal{L}_{b m}= & -h^{\mu}{ }_{\mu} \partial_{\nu} \partial_{a} h^{\nu a}-\partial^{\nu} h_{\mu \nu} \partial_{a} h^{\mu a} \\
\mathcal{L}_{b f}= & \frac{1}{2} \partial_{\rho} \partial^{\rho} h^{\mu}{ }_{\mu} h_{a}^{a}+\frac{1}{2} h^{\mu}{ }_{\mu} \partial^{b} \partial_{b} h_{a}^{a}-\frac{1}{2} h_{a}^{a} \partial_{\mu} \partial_{\nu} h^{\mu \nu}-\frac{1}{2} h^{\mu}{ }_{\mu} \partial_{a} \partial_{b} h^{a b}
\end{aligned}
$$

Results from FORM $(2 / 2)$

$$
\begin{aligned}
\mathcal{L}_{m m}= & -\frac{1}{2} \partial_{\nu} h_{\mu a} \partial^{\nu} h^{\mu a}-\frac{1}{2} \partial_{\mu} h^{\mu a} \partial^{\nu} h_{\nu a}-\frac{1}{2} \partial_{b} h_{\mu a} \partial^{b} h^{\mu a}+\frac{1}{2} \partial^{a} h_{\mu a} \partial_{b} h^{\mu b} \\
\mathcal{L}_{m f}= & h^{a}{ }_{a} \partial_{\mu} \partial_{b} h^{\mu b}+\partial^{\mu} h_{\mu a} \partial_{b} h^{a b} \\
\mathcal{L}_{f f}= & \frac{1}{4} \partial_{\mu} h_{a}^{a} \partial^{\mu} h_{b}^{b}-\frac{1}{4} \partial_{c} h_{a}^{a} \partial^{c} h_{b}^{b}+\frac{1}{2} h_{a}^{a} \partial_{c} \partial_{d} h^{c d}+\frac{1}{4} \partial_{\mu} h_{a b} \partial^{\mu} h^{a b} \\
& -\frac{1}{4} \partial_{c} h_{a b} \partial^{c} h^{a b}+\frac{1}{2} \partial^{b} h_{a b} \partial_{c} h^{a c}
\end{aligned}
$$

Results from FORM (2/2)

$$
\begin{aligned}
\mathcal{L}_{m m}= & -\frac{1}{2} \partial_{\nu} h_{\mu a} \partial^{\nu} h^{\mu a}-\frac{1}{2} \partial_{\mu} h^{\mu a} \partial^{\nu} h_{\nu a}-\frac{1}{2} \partial_{b} h_{\mu a} \partial^{b} h^{\mu a}+\frac{1}{2} \partial^{a} h_{\mu a} \partial_{b} h^{\mu b} \\
\mathcal{L}_{m f}= & h^{a}{ }_{a} \partial_{\mu} \partial_{b} h^{\mu b}+\partial^{\mu} h_{\mu a} \partial_{b} h^{a b} \\
\mathcal{L}_{f f}= & \frac{1}{4} \partial_{\mu} h_{a}^{a} \partial^{\mu} h_{b}^{b}{ }_{b}-\frac{1}{4} \partial_{c} h^{a}{ }_{a} \partial^{c} h_{b}^{b}+\frac{1}{2} h^{a}{ }_{a} \partial_{c} \partial_{d} h^{c d}+\frac{1}{4} \partial_{\mu} h_{a b} \partial^{\mu} h^{a b} \\
& -\frac{1}{4} \partial_{c} h_{a b} \partial^{c} h^{a b}+\frac{1}{2} \partial^{b} h_{a b} \partial_{c} h^{a c}
\end{aligned}
$$

24 terms - looks long, but tractable. BUT this was simplified by hand from around 100 terms. How do we know there's not been a mistake in either the code or the simplification?

How many terms?

- Already seen that there's 24 terms.

How many terms?

- Already seen that there's 24 terms.
- Unfortunately, we want to see how the theory behaves on our base manifold \mathcal{M}. This means performing the $d^{4} \theta$ part of the integration in the action.

How many terms?

- Already seen that there's 24 terms.
- Unfortunately, we want to see how the theory behaves on our base manifold \mathcal{M}. This means performing the $d^{4} \theta$ part of the integration in the action.
- Each field in our 8-dimensional action is actually 5 fields from the point of view of the 4-dimensional theory:
$h(x, \theta)=h(x)+M \theta^{a} h_{, a}+M^{2} \theta^{a} \theta^{b} h_{, a b}+M^{3} \theta^{a} \theta^{b} \theta^{c} h_{, a b c}+M^{4} \theta^{a} \theta^{b} \theta^{c} \theta^{d} h_{, a b c d}$

How many terms?

- Already seen that there's 24 terms.
- Unfortunately, we want to see how the theory behaves on our base manifold \mathcal{M}. This means performing the $d^{4} \theta$ part of the integration in the action.
- Each field in our 8-dimensional action is actually 5 fields from the point of view of the 4-dimensional theory:
$h(x, \theta)=h(x)+M \theta^{a} h_{, a}+M^{2} \theta^{a} \theta^{b} h_{, a b}+M^{3} \theta^{a} \theta^{b} \theta^{c} h_{, a b c}+M^{4} \theta^{a} \theta^{b} \theta^{c} \theta^{d} h_{, a b c d}$
We will not show (x, θ) or (x) arguments unless it is particularly instructive to do so.

Dealing with the θ 's

- We take the convention that

$$
\int d^{4} \theta \theta^{a} \theta^{b} \theta^{c} \theta^{d}=M^{-4} \epsilon^{a b c d}
$$

This ensures that starting with dimension-1 fields means ending with dimension-1 fields.

Dealing with the θ 's

- We take the convention that

$$
\int d^{4} \theta \theta^{a} \theta^{b} \theta^{c} \theta^{d}=M^{-4} \epsilon^{a b c d}
$$

This ensures that starting with dimension-1 fields means ending with dimension-1 fields.

- It is also useful to define a "dual" in θ-space:

$$
\begin{aligned}
* h & =\epsilon^{a b c d} h_{, a b c d} \\
* h^{, a} & =\epsilon^{a b c d} h_{, b c d} \\
* h^{, a b} & =\frac{1}{2} \epsilon^{a b c d} h_{, c d}
\end{aligned}
$$

and we organise terms to have the lowest number of indices possible (to make cancellations clearer).

Next steps

- The result is a horrendous mess of terms, but doable by hand (eventually).

Next steps

- The result is a horrendous mess of terms, but doable by hand (eventually).
- To extract the degrees of freedom, we need to fix a gauge - also tricky to work out what is allowed, and we try and minimise nonlocal choices such as de Donder and use as many unitary gauges as possible.

Next steps

- The result is a horrendous mess of terms, but doable by hand (eventually).
- To extract the degrees of freedom, we need to fix a gauge - also tricky to work out what is allowed, and we try and minimise nonlocal choices such as de Donder and use as many unitary gauges as possible.
- Some fields left then act as Lagrange multipliers and enforce certain conditions, which removes some more terms.

Final Lagrangian

$$
\begin{aligned}
\mathcal{L}_{e}= & -\frac{1}{2} \partial_{\rho} h_{\mu \nu} \partial^{\rho} * h^{\mu \nu}-\frac{1}{2} \partial_{\rho} h_{\mu \nu, a b} \partial^{\rho} * h^{\mu \nu, a b}+\partial^{\nu} h_{\mu \nu, a b} \partial_{\rho} * h^{\mu \rho, a b} \\
& +M^{2} \epsilon^{a b} h_{\mu \nu, a b} * h_{\mu \nu} \\
\mathcal{L}_{o}= & * \varphi^{, a} \partial_{\mu} \partial_{\nu} h^{\mu \nu}{ }_{, a}+\partial_{\rho} h_{\mu \nu, a} \partial^{\rho} * h^{\mu \nu, a}+M^{2} \epsilon^{a b} \epsilon_{a b c d} * \varphi^{, c} * \varphi^{, d} \\
& -\frac{1}{4} M^{2} \epsilon^{a b} \epsilon_{a b c d} * h_{\mu \nu}{ }^{, c} * h^{\mu \nu, d}
\end{aligned}
$$

The propagator

- Focus on the even part only. Define

$$
D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & p
\end{array}\right)\left(=D^{-1}\right) \quad \text { and } \quad A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

The propagator

- Focus on the even part only. Define

$$
D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & p
\end{array}\right)\left(=D^{-1}\right) \quad \text { and } \quad A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

- Then the propagator (in a certain basis) looks like

$$
\Delta=\frac{1}{p^{2} D+M^{2} A}
$$

The propagator

- Focus on the even part only. Define

$$
D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & p
\end{array}\right)\left(=D^{-1}\right) \quad \text { and } \quad A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

- Then the propagator (in a certain basis) looks like

$$
\Delta=\frac{1}{p^{2} D+M^{2} A}
$$

- Success! We've generated a mass, right? Well, not quite...

The problem

- First, we write $\Delta=\frac{1}{p^{2}} D\left(1+\frac{M^{2}}{p^{2}}(D A)\right)^{-1}$.

The problem

- First, we write $\Delta=\frac{1}{p^{2}} D\left(1+\frac{M^{2}}{p^{2}}(D A)\right)^{-1}$.
- It turns out that $D A$ is nilpotent. That is, $(D A)^{4}=0$.

The problem

- First, we write $\Delta=\frac{1}{p^{2}} D\left(1+\frac{M^{2}}{p^{2}}(D A)\right)^{-1}$.
- It turns out that $D A$ is nilpotent. That is, $(D A)^{4}=0$.
- Therefore, the Taylor series terminates, and we are left with only have a pole at $p=0$.

The problem

- First, we write $\Delta=\frac{1}{p^{2}} D\left(1+\frac{M^{2}}{p^{2}}(D A)\right)^{-1}$.
- It turns out that $D A$ is nilpotent. That is, $(D A)^{4}=0$.
- Therefore, the Taylor series terminates, and we are left with only have a pole at $p=0$.
- So, there are no massive excitations in this theory (as it stands), and so the procedure used for $S U(N \mid N)$ does not apply.

Conclusions

- $S U(N)$ can be regularised by $S U(N \mid N)$, and we hope to extend that to gravity.

Conclusions

- $S U(N)$ can be regularised by $S U(N \mid N)$, and we hope to extend that to gravity.
- It is entirely possible to construct a linearised theory of gravity on a supermanifold.

Conclusions

- $S U(N)$ can be regularised by $S U(N \mid N)$, and we hope to extend that to gravity.
- It is entirely possible to construct a linearised theory of gravity on a supermanifold.
- Supermanifolds have many issues around how to carefully define geometric objects such as vectors and derivatives.

Conclusions

- $S U(N)$ can be regularised by $S U(N \mid N)$, and we hope to extend that to gravity.
- It is entirely possible to construct a linearised theory of gravity on a supermanifold.
- Supermanifolds have many issues around how to carefully define geometric objects such as vectors and derivatives.
- After performing the $d^{4} \theta$ integration, gauge fixing and applying Lagrange multipliers, we end up with a (relatively) simple Lagrangian.

Conclusions

- $S U(N)$ can be regularised by $S U(N \mid N)$, and we hope to extend that to gravity.
- It is entirely possible to construct a linearised theory of gravity on a supermanifold.
- Supermanifolds have many issues around how to carefully define geometric objects such as vectors and derivatives.
- After performing the $d^{4} \theta$ integration, gauge fixing and applying Lagrange multipliers, we end up with a (relatively) simple Lagrangian.
- However, the "mass" M that appeared in the expansion of superfields does not behave like a mass at the level of the propagator.

Outlook

- So is this way of trying to regularise gravity dead?

Outlook

- So is this way of trying to regularise gravity dead?
- Certainly, the way presented here is, at best, incomplete.

Outlook

- So is this way of trying to regularise gravity dead?
- Certainly, the way presented here is, at best, incomplete.
- The key thing we did not do on the supermanifold - that was done in $S U(N \mid N)$ - was introduce a superscalar fields to break SDiff, so perhaps doing so would be more useful.

Outlook

- So is this way of trying to regularise gravity dead?
- Certainly, the way presented here is, at best, incomplete.
- The key thing we did not do on the supermanifold - that was done in $S U(N \mid N)$ - was introduce a superscalar fields to break SDiff, so perhaps doing so would be more useful.
- One thing is clear however: supermanifolds have interesting properties in their own right.

Any Questions?

Thanks for your attention.

