Probing Black Hole Microstates

Marcel Hughes Supervisor: Dr Rodolfo Russo m.r.r.hughes@qmul.ac.uk

UK Research and Innovation

The Problem(s) with Black Holes

$$GR \Rightarrow Singularity + Horizon \Rightarrow \begin{cases} Information loss \\ S_{BH} \end{cases}$$

The Problem(s) with Black Holes

Fuzzball Proposal

- A potential resolution within the framework of string theory.
- "A black hole is microscopically described by an ensemble of (<u>pure</u>) microstates".
- In the supergravity limit, a class are described by <u>regular</u> and <u>horizonless</u> microstate geometries.

 One of the families of microstate geometries that have been explicitly constructed for the D1D5 system is (1/8th BPS case) (Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner)

The Fuzzball Proposal

 One of the families of microstate geometries that have been explicitly constructed for the D1D5 system is (1/8th BPS case) (Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \left(dv + \beta \right) \left(du + \omega \right) + \sqrt{\mathcal{P}} \Sigma \left(\frac{dr^2}{x} + d\theta^2 \right) + \sqrt{\mathcal{P}} \left[x \, \sin^2\theta \, d\phi^2 + r^2 \cos^2\theta \, d\psi^2 \right]$$

The Fuzzball Proposal

 One of the families of microstate geometries that have been explicitly constructed for the D1D5 system is (1/8th BPS case) (Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \left(dv + \beta \right) \left(du + \omega \right) + \sqrt{\mathcal{P}} \Sigma \left(\frac{dr^2}{x} + d\theta^2 \right) + \sqrt{\mathcal{P}} \left[x \, \sin^2\theta \, d\phi^2 + r^2 \cos^2\theta \, d\psi^2 \right]$$

$$\mathcal{P} = Z_1 Z_2 - Z_4^2 \qquad \beta = \frac{R a^2}{\sqrt{2} \Sigma} (\sin^2 \theta \, d\phi - \cos^2 \theta \, d\psi) \qquad \omega = \frac{R a^2}{\sqrt{2} \Sigma} (\sin^2 \theta \, d\phi + \cos^2 \theta \, d\psi)$$

$$Z_{1} = 1 + \frac{R^{2} a_{0}^{2}}{Q_{5} \Sigma} + \frac{R^{2} a^{2} b^{2} \cos 2\phi \sin^{2} \theta}{2Q_{5} x \Sigma} \qquad \qquad Z_{2} = 1 + \frac{Q_{5}}{\Sigma} \qquad \qquad Z_{4} = R a b \frac{\cos \phi \sin \theta}{\sqrt{x \Sigma}}$$
$$\Sigma = r^{2} + a^{2} \cos^{2} \theta \qquad \qquad a_{0}^{2} = a^{2} + \frac{b^{2}}{2} \qquad \qquad x = r^{2} + a^{2}$$

The Fuzzball Proposal

 One of the families of microstate geometries that have been explicitly constructed for the D1D5 system is (1/8th BPS case) (Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \left(dv + \beta \right) \left(du + \omega \right) + \sqrt{\mathcal{P}} \Sigma \left(\frac{dr^2}{x} + d\theta^2 \right) + \sqrt{\mathcal{P}} \left[x \, \sin^2\theta \, d\phi^2 + r^2 \cos^2\theta \, d\psi^2 \right]$$

Interested in how specific physics differs in these microstates as compared to classical black holes. To go beyond the counting problem.

The Eikonal (Flat Space)

- An observable that originated in the study of flat space scattering with $|s| \gg |t|$
- Leading contributions in energy at each order in 1/Nresum to a phase $e^{i\delta(s,L)}$ ('t Hooft `87; Amati, Ciafaloni, Veneziano `87)
- At leading order, $\delta(s,L)$ is the tree level graviton ladder diagram

The Eikonal (AdS)

• For the case of scattering from a black hole, $\delta(s, L)$ can be computed from the geodesic length in a (GR) black hole background. (Parnachev et al.)

• We are generalising this to a classical action of the probe in a microstate geometry. (Stay tuned...)

Dual CFT Picture

- Can also study microstates using the 2d affine SCFT dual to their asymptotically $AdS_3 \times S^3$ decoupling region.
- It was shown that the phase shift in a CFT is related to the Fourier transform of a 4-point correlator in the Regge limit. (Cornalba, Costa, Penedones, Schiappa `07)

$$e^{i\delta(\mathbf{p})} \propto \int d\mathbf{x} \; e^{-i\mathbf{p}\cdot\mathbf{x}} \langle \mathcal{O}_H \mathcal{O}_L \mathcal{O}_L \mathcal{O}_H \rangle_{\circlearrowleft}$$

- Has been studied using the Virasoro vacuum block contribution and matched to $\delta(s, L)$ for AdS black holes in Einstein gravity. (Kulaxizi, Seng Ng, Parnachev `18)
- Explicit D1D5 HHLL correlators have been constructed for certain classes of heavy operators $\mathcal{O}_H \Rightarrow$ can study δ beyond the classical black hole.

Summary

- The fuzzball proposal is one program of work to resolve the problems with our current description of black holes.
- Scattering in the eikonal regime is <u>one</u> piece of physics to study black holes beyond the thermal ensemble.
- The eikonal can be studied in both the <u>known</u> microstate geometries and from <u>known</u> HHLL correlators in the dual CFT.

Thank you for listening!

