Gravitational Waves from the Early Universe

Chloe Gowling

Supervisors: Mark Hindmarsh and Antony Lewis

UNIVERSITY OF SUSSEX

Overview

- LISA
- Gravitational waves (GWs) from the early universe.
- First order electroweak phase transition.
- The sound shell model.
- Current work
 - Connecting observables to model parameters.
 - How can we extract parameters from a GW power spectrum?

Laser Interferometer Space Antenna

Figure credit: K. Danzmann et al. LISA proposal (2017)

Cosmological phase transitions

Credit xkcd comics: https://xkcd.com/2240/

Frequency today of GWs from the early universe

• The minimum frequency of a GW generated at time t

$$f_{min} = H = \frac{1}{t}.$$

• Today, taking into account redshift, this corresponds to:

$$f_{min,0} = H_{T,0} = \frac{a}{a_0} H_T$$
$$f_{min,0} = H_{T,0} = 1.6 \times 10^{-5} \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \left(\frac{T}{100 GeV}\right) [Hz]$$

Gravitational waves from the EWPT

- When $T < T_c$ bubbles of broken phase Higgs $_{V(\phi)}$ nucleate.
- Sources of gravitational waves
 - Collision of bubble walls
 - Sound waves
 - Other hydrodynamic modes

Thermodynamic parameters

- Transition strength $\alpha \sim \frac{\Delta V}{\rho_{th}}$
- Wall speed- v_w
- Transition rate- $oldsymbol{eta}$
- Nucleation temperature T_n

Derived parameters

- Mean bubble separation $R_* = (8\pi)^{\frac{1}{3}} \frac{v_w}{R}$
- Sound shell thickness $\sim |v_w c_s|$
- Kinetic energy fraction $K^2(v_w, \alpha)$

Sound shell model

- GW power spectrum can be computed form the velocity power spectrum of the fluid.
- SSM proposes the velocity PS can be calculated from the sound shells.
- Analytic approximation of simulation results is shown in red.

Figure credit: M.Hindmarsh, slides from Nordita workshop 2019

Simplified sound shell model

•
$$\Omega_{GW}(f) = \Omega_p M(s, r_b)$$

•
$$M = s^9 \left(\frac{1+r_b^4}{r_b^4+s^4}\right)^2 \left(\frac{5}{5-m+ms^2}\right)^{\frac{5}{2}}$$

•
$$m = \frac{1+9r_b^4}{1+r_b^4}$$
, $s = \frac{f}{f_p}$, $r_b = \frac{f_b}{f_p}$

• Observable parameters Ω_p , f_p and r_b

arXiv:1909.10040v1

Sensitivity forecasts: f_p

•
$$\chi^2 = T_{obs} \int \frac{(\Omega_{GW}(f,\theta) - \Omega_n(f))}{{\Omega_n}^2}$$

• $\mathcal{L} = e^{-\frac{1}{2}\chi^2}$

•
$$F_{ij} = \frac{\partial^2 \ln(\mathcal{L})}{\partial \theta_i \partial \theta_j} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \theta_i \partial \theta_j}$$

• $\frac{\Delta f_p}{f_p}$ relative uncertainty in f_p

Sensitivity forecasts: r_b

•
$$r_b = \frac{f_b}{f_p}$$
, $0 < r_b < 1$

Larger r_b
corresponds to a
narrower power
spectrum.

Connection to thermodynamic parameters

- $\Omega_p(v_w, \alpha, H_n R_*)$
- $f_p(v_w, \alpha, H_n R_*)$
- $r_b(v_w, \alpha)$
- fixed T_n

Astrophysical noise

White dwarf binaries : arXiv:1703.09858v2, Compact binaries: PhysRevLett.120.091101

Next steps

- Better understanding of the sources of noise
 - Astrophysical noise, white dwarfs, BBHs and BNSs
- Further investigate the relationship between (Ω_p, f_p, r_p) and thermodynamic parameters $(v_w, \alpha, H_n R_*, T_n)$.
- Perform Monte Carlo analysis on for thermodynamic parameters.