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What are topological solitons?

I A field at a point in time is a map from our world R3,R2 to
some other manifold

I Under the dynamics of the theory, the map varies smoothly
over time

I Under continuous variations, there are certain ‘topological’
properties of a map that are invariant

I These are ‘conserved charges’ of the theory- no corresponding
symmetry!
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What are they not? A side-note on bad naming

Topological Solitons ‘Integrability’ Solitons

Ginzburg-Landau vortices

Sigma model ’lumps’

Generic kink

Magnetic skyrmions

Nuclear (SU(2)) skyrmions

Sine-gordon kink

Korteweg-de Vries
soliton

1D Non-linear
Schrödinger
equation soliton



The Bogomol’nyi argument

I We ‘complete the square’ and split the energy into two parts:

I The integral of something squared
I Something topological, ie proportional to the conserved charge

I This does two separate things:

I It gives us a lower bound on the energy, related to the topology
I It gives us an equation to solve to find minimizers- which is in

general easier to solve than the Euler-Lagrange equation
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Example: the 1D kink

We have the static energy functional for a S1-valued field θ(x):

E =
∫
{1

2θ
′(x)2 + V (θ)}dx
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Example: the 1D kink
We have the static energy functional for a S1-valued field θ(x):

E =
∫
{1

2θ
′(x)2 + V (θ)}dx

after some blackboard work:

E =
∫

1
2 (θ′(x)−

√
2V )2dx + Q

∫ 2π
0

√
2Vdθ
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Chiral magnets and magnetic skyrmions

Take a magnet with a crystal structure that breaks parity. This
allows an antisymmetric ‘Dzyaloshinskii-Moriya’ exchange term in
the microscopic hamiltonian:

E [{Si}] = −J
∑

<ij> Si ·Sj +
∑

<ij>Dij ·(Si×Sj)−
∑

i B ·Si

Going to the continuum level, this gives the following energy
functional:

E [n] =
∫
R2

(
1
2 (∇n)2 + kn · (∇× n) + hz(1− n3) + ha(1− n2

3)
)



The bogomol’nyi argument for magnetic skyrmions

Two steps:

1. We first reinterpret the model as a gauged sigma model with
covariant derivative Din = ∂in + Ai × n, Ai = −kei , and
associated field strength F12 = k2e3:
E [n] =

∫
R2

(
1
2 (Dn)2 + V (n)

)
2. When ha = −k2

2 , hz = k2, we can rewrite the above as
E [n] =

∫
R2

(
1
2 (D1n + n× D2n)2 + n · (∂1n× ∂2n) + b.t.

)



Solving the bogomol’nyi equation

So we now want to find solutions to D1n + n× D2n = 0
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So we now want to find solutions to D1n + n× D2n = 0
The problem is straightforward in complex co-ordinates z = x + iy
on the domain, and w = n1+in2

1−n3
on the target.

For the case considered, where Ai = −kei , this becomes:

∂z̄w =
i

2
kw2 =⇒ ∂z̄

1

w
= − i

2
k

Which is solved by
w(z , z̄) = − i

2kz̄ + f (z)
with f (z) a smooth function of z . For finite degree, f (z) must be
a ratio of two polynomials and the degree of the solution can be
found from the degrees of these polynomials



Conclusions and further work

I Reference: BBS, Calum Ross and Bernd J Schroers,
‘Magnetic Skyrmions at Critical Coupling’

I This method from mathematical physics can be used to find
explicit analytical solutions of the Euler-Lagrange equations
for ‘real world’ topological solitons.

I What’s more, some of the more outlandish solutions have now
been seen numerically away from this ‘critical point’
(upcoming paper with Kiselev, Kuchkin and collaborators)

I On the theory side, these solutions could be used to
investigate the dynamics of skyrmions, or their quantization.
No progress yet however.
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