Dualities for QED in 2+1 dimensions

Mohammad Akhond

YTF12 - Dec 2019

Patterns from the past

QFT developments

- $ightharpoonup \mathcal{N} = 1$ Seiberg duality
- $ightharpoonup \mathcal{N}=2$ Seiberg-Witten solution,
- ▶ d=3 mirror symmetry

String theory realisation

- Elitzur-Giveon-Kutasov trajectory
- Witten's M-theory uplift
- Hanany-Witten interpretation

Lesson: String theory seems to be aware of deep facts about QFT. But it is a huge framework and so QFT input is crucial.

Recent developments

Many interesting results in non-SUSY gauge theories in the recent past. One particularly interesting theory is QED₃

$$\int \textit{d}^{3}x\frac{1}{4e^{2}}\textit{f}_{\mu\nu}^{2}+\frac{\textit{K}}{4\pi}\epsilon^{\mu\nu\rho}\textit{G}_{\mu}\partial_{\nu}\textit{G}_{\rho}+\textrm{i}\bar{\psi}\left(\not{\partial}+\textit{G}\textit{a}\right)\psi$$

- ▶ Strongly coupled in the IR: β < 0, [e^2] = mass
- It has relevance to brane dynamics in string theory

Duality

- Gauge group, matter representation are not fundamental notions
- ▶ But honest global symmetries better agree.
- 't Hooft anomalies must match
- Physical observables (gauge invariant operators) must match

Example: Maxwell theory

$$\begin{split} Z_A &= \int \mathcal{D} \alpha_\mu e^{\int d^3 x \frac{1}{4e^2} f_{\mu\nu}^2} = \int \mathcal{D} f_{\mu\nu} \mathcal{D} \sigma e^{\int d^3 x \left[\frac{1}{4e^2} f_{\mu\nu}^2 - \frac{1}{4\pi} \sigma \epsilon^{\mu\nu\rho} \partial_\mu f_{\nu\rho}\right]} \\ Z_B &= \int \mathcal{D} \sigma e^{\int d^3 x - \frac{e^2}{8\pi^2} (\partial_\mu \sigma)^2} \end{split}$$

Symmetries: $U(1)_M \times U(1)_{1-form}$

$$\begin{array}{ll} J_{\mu} = \frac{1}{4\pi} \epsilon_{\mu\nu\rho} F^{\nu\rho} & \qquad \qquad \widetilde{J}_{\mu} = \frac{\mathrm{e}^2}{8\pi^2} \partial_{\mu} \sigma \\ J_{\mu\nu} = \frac{1}{2\mathrm{e}^2} f_{\mu\nu} & \qquad \widetilde{J}_{\mu\nu} = \frac{1}{4\pi} \epsilon_{\mu\nu\rho} \partial^{\rho} \sigma \end{array}$$

Note: No gauge symmetry on the dual side

Bosonisation

Central result in 3d gauge theories

$$U(N)_{K,K\mp N} \oplus N_f$$
 fermions $\leftrightarrow U(K)_{-N,-N\pm K} \oplus N_f$ WF scalars (1)

Evidence

- Large N checks
- Quantum numbers of dual operators match
- Anomaly matching
- String theory embeddings
- Consistent with other dualities

Consider N = 0, $N_f = |K| = 1$, i.e.

$$ar{\psi}$$
i $ot\!\!D_B\psi\mprac{1}{8\pi}BdB\longleftrightarrow |D_a\phi|^2\pmrac{1}{4\pi}ada\pmrac{1}{2\pi}adB$

A web of dualities

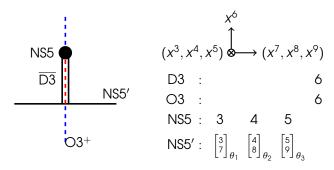
$$ar{\psi}$$
i $ot\!\!/ \!\!\!/ D_B\psi \mp rac{1}{8\pi}BdB \longleftrightarrow |D_a\phi|^2 \pm rac{1}{4\pi}ada \pm rac{1}{2\pi}adB$

Starting from this we can generate a web of dualities, We first promote ${\it B} \rightarrow {\it b}$

$$\bar{\psi} \mathrm{i} \not\!\!D_b \psi \longleftrightarrow |D_a \phi|^2 + \frac{1}{4\pi} a da + \frac{1}{2\pi} a db + \frac{1}{8\pi} b db + \frac{1}{4\pi} b dC$$

Next, integrate out b; db = -d(C + 2a)

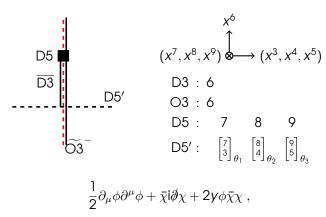
$$\bar{\psi} \mathrm{i} \not\!\!D_b \psi \longleftrightarrow |D_\alpha \phi|^2 - \frac{1}{4\pi} ada - \frac{1}{2\pi} adC - \frac{1}{8\pi} CdC$$


Using the lower sign duality in (3) we have

$$\bar{\psi}i\not\!\!D_{\mathcal{b}}\psi\longleftrightarrow\bar{\chi}i\not\!\!D_{\mathcal{C}}\chi$$

"particle-vortex duality"

Charge 2 QED₃


Tower of vectors, scalars and fermions with masses

$$M_{V}^{(n)} = \frac{n\pi}{L} \; , \quad M_{s_6}^{(n)} = \frac{n\pi}{L} \; , \quad M_{s_k}^{(n)} = \frac{\theta_k + n\pi}{L} \; , \quad M_{f_i}^{(n)} = \frac{\theta_i + n\pi}{L} \; ,$$

Effective theory at scales $E \ll \frac{1}{L} \ll \frac{1}{l_s}$ is charge 2 QED₃:

$$-rac{1}{4e^2}f_{\mu
u}^2+ar{\psi}\mathsf{i}D\!\!\!/\psi$$

Flavour current $\tilde{J}_{\mu}=\bar{\chi}\gamma_{\mu}\chi$ mapped to the magnetic symmetry of QED $_3$

Puzzle: charge 2 QED₃ also has a $\mathbb{Z}_2^{1-\text{form}}$ centre.

Summary & Outlook

- Many gauge theories in (2+1)d exhibit dualities
- The weakly coupled descriptions are radically different
- Duality for charge 2 QED₃ from a brane construction
- confusion about the centre symmetry
- To compare with existing conjecture must include CS terms
- In our model this can be done by turning on RR flux for the axion