Lifetimes of Charmed Hadrons

Christos Vlahos

Institute of Particle Physics Phenomenology

Durham University
In collaboration with A. Lenz and D. Wang

YTF 12

Durham University

Motivation

Framework

Preliminary Results

Contents

Motivation

Framework

Preliminary Results

Motivation from ΔA_{CP}

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

where

$$A_{CP}(f,t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)}$$

- Current value: $\Delta A_{CP} = (15.6 \pm 2.9) \times 10^{-4}$
 - [arXiv:1903.08726]

- \triangleright This is a 5.3 σ deviation from SM
- What could be missing?
 - Statistics
 - ii Big non perturbative effects
 - iii New physics

Motivation from ΔA_{CP}

What does this have to do with lifetimes?

- ▶ We want to constrain further the three possible explanations
- Inclusive decays are easier than exclusive ones
- ▶ If a theory is working well for the easy case then it could work also for the complicated case - BUT this is not a proof

Charm Baryon Lifetimes

The last couple of years LHCb published papers on precision measurements of $\Omega_c^0, \Lambda_c^+, \Xi_c^+$ and Ξ_c^0 [arXiv:1807.02024]

[arXiv:1906.08350]

i
$$\tau(\Omega_c^0) = 268 \pm 24 \pm 10 \pm 2 \text{fs}$$

ii $\tau(\Lambda_c^+) = 203.5 \pm 1 \pm 1.3 \pm 1.4 \text{fs}$
iii $\tau(\Xi_c^+) = 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \text{fs}$
iv $\tau(\Xi_c^0) = 154.5 \pm 1.7 \pm 1.6 \pm 1 \text{fs}$

- Theoretical predictions are far less precise
- Test framework on simpler cases (mesons) and then apply them to baryons

Contents

Motivation

Framework

Preliminary Results

Framework

Effective Hamiltonian:
$$\mathcal{H}_{\mathrm{eff}} = \frac{G_F}{\sqrt{2}} \left[C_1 Q_1 + C_2 Q_2 + Q_e + Q_\mu \right]$$

$$Q_1 = \bar{s}_j' \gamma_\mu \left(1 - \gamma_5 \right) c_i \bar{u}_i \gamma^\mu \left(1 - \gamma_5 \right) d_j'$$

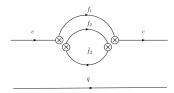
$$Q_2 = \bar{s}_i' \gamma_\mu \left(1 - \gamma_5 \right) c_i \bar{u}_j \gamma^\mu \left(1 - \gamma_5 \right) d_j'$$

$$Q_I = \bar{s}_i' \gamma_\mu \left(1 - \gamma_5 \right) c_i \bar{\nu}_j \gamma^\mu \left(1 - \gamma_5 \right) \nu$$

- Q_i involves long distance physics
- C_i involves short distance physics

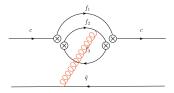
Heavy Quark Expansion(HQE)

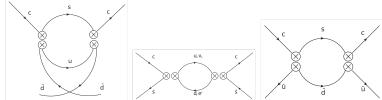
- ightharpoonup Heavy quark momentum \approx hadrom momentum i.e $p_O^\mu = m_Q v^\mu + k^\mu$
- $\Gamma(H \to X) = \frac{1}{2m_H} \sum_{X} \int_{PS} (2\pi)^4 \delta^{(4)} \left(p_H p_X \right) \left| \langle X | \mathcal{H}_{eff} | H \rangle \right|^2$
- ▶ Using the Optical Theorem: $\Gamma(H \to X) = \frac{1}{2m_0} \langle H | \mathcal{T} | H \rangle$ where


$$\mathcal{T} = \operatorname{Im} i \int d^4 x T \left[\mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) \right]$$

 \triangleright Finally expanding in inverse powers of m_Q we get:

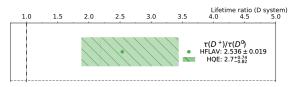
$$\Gamma_0 \left[c_3 \frac{\langle H | \bar{Q}Q | H \rangle}{2M_H} + \frac{c_5}{m_Q^2} \frac{\langle H | \bar{Q}g_5 \sigma_{\mu\nu} G^{\mu\nu} Q | H \rangle}{2M_H} + \frac{c_6}{m_Q^3} \frac{\langle H | (\bar{Q}q)\bar{q}Q | H \rangle}{2M_H} + \ldots \right]$$


Dimension 3 contribution


- The leading term comes from the decay of the charm quark
- Diagrams appear at 2-loop level
- We want to consider all possible decay channels
- ▶ By adding all possible fermion combinations: $c_3 \approx 6.5$

Dimension 5 Contribution

- First correction in HQE: soft interaction with spectator quark
- ▶ In the charm system $c_5 \approx -0.6$

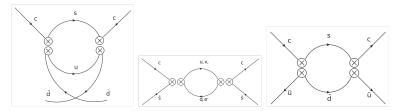


- Next correction: Interaction involving the spectator quark (3) topologies)
- Diagrams appear at 1-loop level \Rightarrow enhancement by $16\pi^2$ compared to previous diagrams
- Non-perturbative effects: $B_{1,2}$ and $\epsilon_{1,2}$

Non-perturbative effects

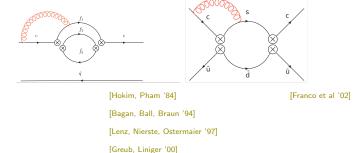
First calculation of bag parameters for D mesons was completed in 2018:

[Kirk, Lenz, Rauh, '18]


Non-perturbative effects

Obs.	$\Gamma_3^{(0)}$	$\Gamma_3^{(1)}$	$\Gamma_3^{(2)}$	$\langle O^{d=6} \rangle$	$\Gamma_4^{(0)}$	$\Gamma_4^{(1)}$	$\langle O^{d=7} \rangle$	Σ	
$\tau(B^+)/\tau(B_d)$	++	++	0	+	++	0	0	**	(7+)
$\tau(B_s)/\tau(B_d)$	++	++	0	$\frac{\pm}{2}$	++	0	0	**	(6.5+)
$\tau(\Lambda_b)/\tau(B_d)$	++	+ 2	0	$\frac{\pm}{2}$	+	0	0	**	(4+)
$\tau(b-baryon)/\tau(B_d)$	++	0	0	0	+	0	0	*	(3+)
$ au(B_c)$	+	0	0	+	0	0	0	*	(2+)
$ au(D^+)/ au(D^0)$	++	++	0	+	++	0	0	**	(7+)
$ au(D_s^+)/ au(D^0)$	++	++	0	$\frac{\pm}{2}$	++	0	0	**	(6.5+)
$\tau(c-baryon)/\tau(D^0)$	++	0	0	0	+	0	0	*	(3+)

[Lenz '18]

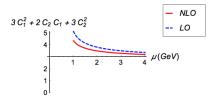


Dimension 7 Contribution

- Expanding further the above diagrams one obtains dimension 7 operators \Rightarrow bag parameters ρ_{1-6}, σ_{1-6}
- Still undetermined but use vacuum insertion approximation: $\rho_i=1\pm 1/12, \sigma_i=0\pm 1/6$

Next-to-leading Order

[Krinner, Lenz, Rauh '13]


Do we really need to go to NLO?

Next-to-leading Order

- ▶ LO can give unphysical results (e.g. $\tau(D^+)$ < 0) [arXiv:1807.00916v3]
- ► Two NLO components for a full calculation
 - i LO diagrams with NLO Wilson coefficients
 - ii NLO diagrams with LO Wilson coefficients
- $\sim \alpha_s(m_c) = 0.42 \approx 2\alpha_s(m_b)$
- Indications of big corrections at dimension 3

[Review by Lenz]

Preliminary Results •00

Preliminary Results

Lifetime Ratios

$$\begin{array}{l} \bullet \quad \frac{\tau(D_1)}{\tau(D_2)} \approx 1 + \frac{\mu_\pi^2(D_2) - \mu_\pi^2(D_1)}{2m_c^2} + \frac{c_G}{c_3} \frac{\mu_G^2(D_1) - \mu_G^2(D_2)}{2m_c^2} + \\ + \sum_{B_x} \frac{c_{6,B_x}^{D_1} B_x^{D_1} - c_{6,B_x}^{D_2} B_x^{D_2}}{c_3 m_c^3} + \dots \end{array}$$

$$\tau_1 \left[c_3 \frac{\mu_{\pi}^2(D_1) - \mu_{\pi}^2(D_2)}{2m_c^2} + c_G \frac{\mu_{G}^2(D_2) - \mu_{G}^2(D_1)}{2m_c^2} + \sum \frac{c_{6,B_X}^{D_2} B_x^{D_2} - c_{6,B_X}^{D_1} B_x^{D_1}}{m_c^3} + \ldots \right]$$

Preliminary Results 000

Numerical results

$$\left(\frac{\tau(D^{+})}{\tau(D^{0})} \right)_{\overline{\rm MS}} = 2.2 \pm 0.4 ({\rm hadr.}) \begin{array}{c} +0.3 \\ -0.7 \end{array} ({\rm scale}) \pm 0.0 ({\rm param.})$$

Preliminary Results

000

$$\qquad \qquad \left(\frac{\tau(D^+)}{\tau(D^0)}\right)_{\overline{\text{Exp}}} = 2.536 \pm 0.19$$

$$\left(\frac{\bar{\tau}(D_s^+)}{\tau(D^0)} \right)_{\overline{\rm MS}} = 1.19 \pm 0.12 ({\rm hadr}) \pm 0.04 ({\rm scale}) \pm 0.01 ({\rm param.})$$
[Lenz. Rauh, '13]

$$\qquad \qquad \left(\frac{\tau(D_s^+)}{\tau(D^0)}\right)_{\overline{\text{Exp}}} = 1.289 \pm 0.019$$

Contents

Motivation

Framework

Preliminary Results

- ▶ In order to test the $1/m_c$ expansion in ΔA_{CP} calculations it's good to verify its validity by applying in a simpler calculation (hadron lifetimes)
- ► HQE is a powerful tool for the B system but it's still open to verify how fast it converges in the charm system
- ▶ Going NLO in α_s looks to have significant effects in lifetime calculations
- Current numerical results look to be in line with experiments but pushing the expansion in α_s and $1/m_c$ will help test the validity of pert. theory and HQE near the charm scale
- ► Then can move to the more complicated case of baryons and test against the new experimental values

Thank you for your attention!