

European Research Council Established by the European Commission

AN INTRODUCION TO HIGH ENERGY JETS

AND CURRENT WORK ON NLO MATCHING

EMMET BYRNE

THE REGGE LIMIT

THE REGGE LIMIT

In the 1950's Tulio Regge studied the quantum mechanical amplitude for $2\rightarrow 2$ scattering in the limit of $s \rightarrow \infty$ while keeping t fixed.

This is now known as the Regge Limit.

THE REGGE LIMIT

In the 1950's Tulio Regge studied the quantum mechanical amplitude for $2\rightarrow 2$ scattering in the limit of $s \rightarrow \infty$ while keeping t fixed.

This is now known as the Regge Limit.

In this limit, the *s* dependence takes a simple form:

$$\mathcal{M}(s,t) \xrightarrow[]{s}{|\frac{s}{t}| \to \infty} f(t) s^{\alpha(t)}$$

This phenomenon is now known as *Reggezation*.

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

$$\begin{split} \sigma_{L0} &\equiv \sigma^{(0)} \\ \sigma^{(1)} &= \sigma^{(0)} \Big(\alpha_{s} c_{0}^{(1)} \log \left(\frac{s}{t} \right) + \alpha_{s} c_{1}^{(1)} \Big) \\ \sigma^{(2)} &= \sigma^{(0)} \Big(\alpha_{s}^{2} c_{0}^{(2)} \log^{2} \left(\frac{s}{t} \right) + \alpha_{s}^{2} c_{1}^{(2)} \log \left(\frac{s}{t} \right) + \alpha_{s}^{2} c_{2}^{(2)} \Big) \\ \sigma^{(3)} &= \sigma^{(0)} \Big(\alpha_{s}^{3} c_{0}^{(3)} \log^{3} \left(\frac{s}{t} \right) + \alpha_{s}^{3} c_{1}^{(3)} \log^{2} \left(\frac{s}{t} \right) + \alpha_{s}^{2} c_{2}^{(3)} \log \left(\frac{s}{t} \right) + \alpha_{s}^{2} c_{3}^{(3)} \Big) \end{split}$$

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

$$\sigma_{L0} \equiv \sigma^{(0)}$$

$$\sigma^{(1)} = \sigma^{(0)} \left(\alpha_{s} c_{0}^{(1)} \log\left(\frac{s}{t}\right) + \alpha_{s} c_{1}^{(1)} \right)$$

$$\sigma^{(2)} = \sigma^{(0)} \left(\alpha_{s}^{2} c_{0}^{(2)} \log^{2}\left(\frac{s}{t}\right) + \alpha_{s}^{2} c_{1}^{(2)} \log\left(\frac{s}{t}\right) + \alpha_{s}^{2} c_{2}^{(2)} \right)$$

$$\sigma^{(3)} = \sigma^{(0)} \left(\alpha_{s}^{3} c_{0}^{(3)} \log^{3}\left(\frac{s}{t}\right) + \alpha_{s}^{3} c_{1}^{(3)} \log^{2}\left(\frac{s}{t}\right) + \alpha_{s}^{2} c_{2}^{(3)} \log\left(\frac{s}{t}\right) + \alpha_{s}^{2} c_{3}^{(3)} \right)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

	LL		NLL		NNLL		
$\sigma_{LO} \equiv$	$\sigma^{(0)}$						
$\sigma^{(1)}$ =	$\sigma^{(0)}\left(\alpha_{s}c_{0}^{(1)}\log\left(\frac{s}{t}\right)\right.$	+	$\alpha_{s}c_{1}^{(1)}$				
$\sigma^{(2)}$ =	$\sigma^{(0)}\left(\alpha_{s}^{2}c_{0}^{(2)}\log^{2}\left(\frac{s}{t}\right)\right)$	+	$\alpha_s^2 c_1^{(2)} log\left(\frac{s}{t}\right)$	+	$\alpha_s^2 c_2^{(2)} \Big)$		
$\sigma^{(3)}$ =	$\sigma^{(0)}\left(\alpha_{\rm s}^3 c_0^{(3)} \log^3\left(\frac{{\rm s}}{{\rm t}}\right)\right)$	+	$\alpha_s^3 c_1^{(3)} \log^2\left(\frac{s}{t}\right)$	÷	$\alpha_s^2 c_2^{(3)} log\left(\frac{s}{t}\right)$	+	$\alpha_s^2 c_3^{(3)}$
•			:				:
						1	

When we have a large separation between two scales, we generically get large logarithms of their ratio at all orders in fixed order perturbative QFT.

$$a \longrightarrow 1$$

$$b \longrightarrow 2$$

$$b \longrightarrow 2$$

$$\mathcal{M}^{(0)qQ \to qQ} = [\bar{u}^{\lambda_1}(p_1)ig_s\gamma^{\mu}T^A_{c_1c_a}u^{\lambda_a}(p_a)] \frac{-ig_{\mu\nu}}{t} [\bar{u}^{\lambda_2}(p_2)ig_s\gamma^{\nu}T^A_{c_2c_b}u^{\lambda_b}(p_b)] \implies 2s[g_sT^A_{c_1c_a}]\frac{1}{t}[g_sT^A_{c_2c_b}]$$

$$a - \frac{1}{1}$$

$$b - \frac{1}{2}$$

$$\mathcal{M}^{(0)qQ \to qQ} = [\bar{u}^{\lambda_1}(p_1)ig_s\gamma^{\mu}T^A_{c_1c_a}u^{\lambda_a}(p_a)] \frac{-ig_{\mu\nu}}{t} [\bar{u}^{\lambda_2}(p_2)ig_s\gamma^{\nu}T^A_{c_2c_b}u^{\lambda_b}(p_b)] \implies 2s[g_sT^A_{c_1c_a}]\frac{1}{t}[g_sT^A_{c_2c_b}]$$

This result is independent of the type of particle scattering: For gluon scattering the only difference is a change in the color factors.

This result is independent of the type of particle scattering: For gluon scattering the only difference is a change in the color factors.

For later use we introduce the notation *S* to mean the spinor-string content of the leading order amplitude: $\mathcal{M}^{(0)qQ \to qQ} = g_s^2 T_{c_1c_a}^A T_{c_2c_b}^A \frac{\mathcal{S}^{(0)qQ \to qQ}}{t}$

$$\mathcal{M}_{\text{Fig. 4 (a)}}^{(0)qQ \to qgQ} \xrightarrow[\text{MRK}]{} - g_s^3 \frac{\mathcal{S}_{\text{MRK}}^{(0)qQ \to qQ}}{\mathbf{q}_{1\perp}^2 \mathbf{q}_{2\perp}^2} \epsilon_{\rho}^* (-2p_a^{\rho} \frac{s_{23}}{s_{ab}} + 2p_b^{\rho} \frac{s_{12}}{s_{ab}} + (\mathbf{q}_{1\perp} + \mathbf{q}_{2\perp})^{\rho}) T_{c_1 c_a}^A T_{c_3 c_b}^B f^{ABG}$$

$$\mathcal{M}_{\text{Fig. 4 (b)}}^{(0)qQ \to qgQ} + \mathcal{M}_{\text{Fig. 4 (c)}}^{(0)qQ \to qgQ} \xrightarrow[\text{MRK}]{} - ig_s^3 \frac{\mathcal{S}_{\text{MRK}}^{(0)qQ \to qQ}}{\mathbf{q}_{2\perp}^2} \epsilon_{\rho}^* (\frac{2p_1^{\rho}}{s_{12}} T_{c_1 c_m}^G T_{c_m c_a}^A - \frac{2p_a^{\rho}}{s_{a2}} T_{c_1 c_m}^A T_{c_m c_a}^G) T_{c_2 c_b}^A$$

$$\mathcal{M}_{\text{Fig. 4 (b)}}^{(0)qQ \to qgQ} + \mathcal{M}_{\text{Fig. 4 (c)}}^{(0)qQ \to qgQ} \xrightarrow[\text{MRK}]{} - ig_s^3 \frac{\mathcal{S}_{\text{MRK}}^{(0)qQ \to qQ}}{\mathbf{q}_{2\perp}^2} \epsilon_{\rho}^* (\frac{2p_1^{\rho}}{s_{12}} T_{c_1c_m}^G T_{c_mc_a}^A - \frac{2p_a^{\rho}}{s_{a2}} T_{c_1c_m}^A T_{c_mc_a}^G) T_{c_2c_b}^A$$

$$\mathcal{M}_{\text{Fig. 4 (d)}}^{(0)qQ \to qgQ} + \mathcal{M}_{\text{Fig. 4 (e)}}^{(0)qQ \to qgQ} \xrightarrow[\text{MRK}]{} - ig_s^3 \frac{\mathcal{S}_{\text{MRK}}^{(0)qQ \to qQ}}{\mathbf{q}_{1\perp}^2} \epsilon_{\rho}^* (\frac{2p_3^{\rho}}{s_{23}} T_{c_2c_m}^G T_{c_mc_b}^A - \frac{2p_b^{\rho}}{s_{23}} T_{c_2c_m}^A T_{c_mc_b}^G) T_{c_1c_a}^A$$

ONE REAL EMISSION IN THE MRK LIMIT

[2] Lipatov, Sov. J. Nucl. Phys. 23, 1976

n REAL EMISSIONS IN THE MRK LIMIT

APPLICABILITY OF MRK LIMIT?

[3] Andersen, Smillie, arXiv:0908.2786

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

$$\begin{aligned} V^{\rho}(q_1, q_2) &= -(q_1 + q_2)^{\rho} \\ &+ \frac{p_a^{\rho}}{2} \left(\frac{q_1^2}{p_2 \cdot p_a} + \frac{p_2 \cdot p_b}{p_a \cdot p_b} + \frac{p_2 \cdot p_3}{p_a \cdot p_3} \right) + p_a \leftrightarrow p_1 \\ &- \frac{p_b^{\rho}}{2} \left(\frac{q_2^2}{p_2 \cdot p_b} + \frac{p_2 \cdot p_a}{p_b \cdot p_a} + \frac{p_2 \cdot p_1}{p_b \cdot p_1} \right) - p_b \leftrightarrow p_3 \end{aligned}$$

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

$$\begin{aligned} V^{\rho}(q_{1},q_{2}) &= -(q_{1}+q_{2})^{\rho} \\ &+ \frac{p_{a}^{\rho}}{2} \left(\frac{q_{1}^{2}}{p_{2} \cdot p_{a}} + \frac{p_{2} \cdot p_{b}}{p_{a} \cdot p_{b}} + \frac{p_{2} \cdot p_{3}}{p_{a} \cdot p_{3}} \right) + p_{a} \leftrightarrow p_{1} \\ &- \frac{p_{b}^{\rho}}{2} \left(\frac{q_{2}^{2}}{p_{2} \cdot p_{b}} + \frac{p_{2} \cdot p_{a}}{p_{b} \cdot p_{a}} + \frac{p_{2} \cdot p_{1}}{p_{b} \cdot p_{1}} \right) - p_{b} \leftrightarrow p_{3} \end{aligned}$$

These are the steps taken by the High Energy Jets framework in order to better describe collisions at the large but finite energies of the LHC:

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

$$\begin{aligned} V^{\rho}(q_1, q_2) &= -(q_1 + q_2)^{\rho} \\ &+ \frac{p_a^{\rho}}{2} \left(\frac{q_1^2}{p_2 \cdot p_a} + \frac{p_2 \cdot p_b}{p_a \cdot p_b} + \frac{p_2 \cdot p_3}{p_a \cdot p_3} \right) + p_a \leftrightarrow p_1 \\ &- \frac{p_b^{\rho}}{2} \left(\frac{q_2^2}{p_2 \cdot p_b} + \frac{p_2 \cdot p_a}{p_b \cdot p_a} + \frac{p_2 \cdot p_1}{p_b \cdot p_1} \right) - p_b \leftrightarrow p_3 \end{aligned}$$

These are the steps taken by the High Energy Jets framework in order to better describe collisions at the large but finite energies of the LHC:

$$|\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg \cdots gQ}|^{2} = \frac{N^{2}}{N^{2} - 1} |\mathcal{S}^{(0)qQ \to qQ}|^{2} \left(\frac{C_{F}}{t_{1}^{2}}\right) \left(\prod_{i=1}^{n-2} \frac{-g_{s}^{2}C_{A}}{t_{i}t_{i} + 1} V^{\rho}(q_{i}, q_{i+1}) V_{\rho}(q_{i}, q_{i+1})\right) \left(\frac{C_{F}}{t_{2}^{2}}\right)$$

Why not reinstate the full $S^{(0)}$ instead of using $S_{MRK}^{(0)}$?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

$$\begin{aligned} V^{\rho}(q_{1},q_{2}) &= -(q_{1}+q_{2})^{\rho} \\ &+ \frac{p_{a}^{\rho}}{2} \left(\frac{q_{1}^{2}}{p_{2} \cdot p_{a}} + \frac{p_{2} \cdot p_{b}}{p_{a} \cdot p_{b}} + \frac{p_{2} \cdot p_{3}}{p_{a} \cdot p_{3}} \right) + p_{a} \leftrightarrow p_{1} \\ &- \frac{p_{b}^{\rho}}{2} \left(\frac{q_{2}^{2}}{p_{2} \cdot p_{b}} + \frac{p_{2} \cdot p_{a}}{p_{b} \cdot p_{a}} + \frac{p_{2} \cdot p_{1}}{p_{b} \cdot p_{1}} \right) - p_{b} \leftrightarrow p_{3} \end{aligned}$$

These are the steps taken by the High Energy Jets framework in order to better describe collisions at the large but finite energies of the LHC:

$$|\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg \cdots gQ}|^{2} = \frac{N^{2}}{N^{2} - 1} |\mathcal{S}^{(0)qQ \to qQ}|^{2} \left(\frac{C_{F}}{t_{1}^{2}}\right) \left(\prod_{i=1}^{n-2} \frac{-g_{s}^{2}C_{A}}{t_{i}t_{i} + 1} V^{\rho}(q_{i}, q_{i+1}) V_{\rho}(q_{i}, q_{i+1})\right) \left(\frac{C_{F}}{t_{2}^{2}}\right)$$

What effect do these changes have?

AN IMPROVED DESCRIPTION

VIRTUAL CORRECTIONS IN THE REGGE LIMIT

[4] Fadin, Kuraev, and Lipatov, Phys. Lett. B60 (1975) 50–52

The pattern continues to higher orders:

$$\mathcal{M}_{\mathrm{MRK}}^{(1)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\alpha(\mathbf{q}_{\perp}) \log\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$

The pattern continues to higher orders:

$$\mathcal{M}_{\mathrm{MRK}}^{(1)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\alpha(\mathbf{q}_{\perp}) \log\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$
$$\mathcal{M}_{\mathrm{MRK}}^{(2)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\frac{1}{2}\alpha(\mathbf{q}_{\perp})^{2} \log^{2}\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$

The pattern continues to higher orders:

$$\mathcal{M}_{\mathrm{MRK}}^{(1)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\alpha(\mathbf{q}_{\perp}) \log\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$
$$\mathcal{M}_{\mathrm{MRK}}^{(2)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\frac{1}{2}\alpha(\mathbf{q}_{\perp})^{2} \log^{2}\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$

Fadin, Kuraev and Lipatov found that to all orders, the LL corrections do give:

$$\mathcal{M}_{\mathrm{LL}}^{qQ \to qQ} = 2s[g_s T_{c_1 c_a}^A] \left(\frac{1}{t} \exp\left(\alpha(\mathbf{q}_\perp) \log\left(\frac{s}{\mathbf{q}_\perp}\right)\right)\right) [g_s T_{c_2 c_b}^A]$$

The pattern continues to higher orders:

$$\mathcal{M}_{\mathrm{MRK}}^{(1)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\alpha(\mathbf{q}_{\perp}) \log\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$
$$\mathcal{M}_{\mathrm{MRK}}^{(2)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\frac{1}{2}\alpha(\mathbf{q}_{\perp})^{2} \log^{2}\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$

Fadin, Kuraev and Lipatov found that to all orders, the LL corrections do give:

$$\mathcal{M}_{\mathrm{LL}}^{qQ \to qQ} = 2s[g_s T_{c_1 c_a}^A] \left(\frac{1}{t} \exp\left(\alpha(\mathbf{q}_\perp) \log\left(\frac{s}{\mathbf{q}_\perp}\right)\right)\right) [g_s T_{c_2 c_b}^A]$$

We can interpret this as a modification of the gluon propagator:

The pattern continues to higher orders:

$$\mathcal{M}_{\mathrm{MRK}}^{(1)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\alpha(\mathbf{q}_{\perp}) \log\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$
$$\mathcal{M}_{\mathrm{MRK}}^{(2)qQ \to qQ} = \mathcal{M}_{\mathrm{MRK}}^{(0)qQ \to qQ} \left(\frac{1}{2}\alpha(\mathbf{q}_{\perp})^{2} \log^{2}\left(\frac{s}{\mathbf{q}_{\perp}^{2}}\right) \right)$$

Fadin, Kuraev and Lipatov found that to all orders, the LL corrections do give:

$$\mathcal{M}_{\mathrm{LL}}^{qQ \to qQ} = 2s[g_s T_{c_1 c_a}^A] \left(\frac{1}{t} \exp\left(\alpha(\mathbf{q}_\perp) \log\left(\frac{s}{\mathbf{q}_\perp}\right)\right)\right) \left[g_s T_{c_2 c_b}^A\right]$$

We can interpret this as a modification of the gluon propagator:

VIRTUAL CORRECTIONS IN HEJ

We apply the exponential factor to each *t*-channel gluon:

The factor α is infra-red divergent:

$$\alpha(\mathbf{q}_{i\perp}) = -g_s^2 C_A \frac{\Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}} \frac{2}{\epsilon} \left(\frac{\mathbf{q}_{i\perp}^2}{\mu^2}\right)^{\epsilon} + \mathcal{O}(\epsilon)$$

The factor α is infra-red divergent:

$$\alpha(\mathbf{q}_{i\perp}) = -g_s^2 C_A \frac{\Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}} \frac{2}{\epsilon} \left(\frac{\mathbf{q}_{i\perp}^2}{\mu^2}\right)^{\epsilon} + \mathcal{O}(\epsilon)$$

But consider the case where one emitted gluon is soft:

$$\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_n Q} |^2 \xrightarrow[MRK]{} \frac{\mathbf{p}_i^2 \to 0}{\mathbf{M}RK} \xrightarrow[MRK]{} \frac{4g_s^2 C_A}{\mathbf{p}_i^2} |\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_{i-1}g_{i+1} \cdots g_n Q}|^2$$

The factor α is infra-red divergent:

$$\alpha(\mathbf{q}_{i\perp}) = -g_s^2 C_A \frac{\Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}} \frac{2}{\epsilon} \left(\frac{\mathbf{q}_{i\perp}^2}{\mu^2}\right)^{\epsilon} + \mathcal{O}(\epsilon)$$

But consider the case where one emitted gluon is soft:

$$|\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_n Q}|^2 \xrightarrow[MRK]{} \frac{4g_s^2 \to 0}{p_i^2} \frac{4g_s^2 C_A}{\mathbf{p}_i^2} |\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_{i-1}g_{i+1} \cdots g_n Q}|^2$$

Integrating over the soft phase space gives

$$\int_{y_{i-1}}^{y_{i+1}} \int_0^\lambda \frac{d^{2+2\epsilon} \mathbf{p} \mu^{-2\epsilon}}{(2\pi)^{2+\epsilon}} \frac{4g_s^2 C_A}{\mathbf{p}_i^2} = \frac{g_s^2 C_A}{(2\pi)^{2+2\epsilon}} (y_{i+1} - y_{i-1}) \left[\frac{\pi^{\epsilon}}{\Gamma(1+\epsilon)} \frac{1}{\epsilon} \left(\frac{\lambda^2}{\mu^2} \right)^{\epsilon} \right]$$

The factor α is infra-red divergent:

$$\alpha(\mathbf{q}_{i\perp}) = -g_s^2 C_A \frac{\Gamma(1-\epsilon)}{(4\pi)^{2+\epsilon}} \frac{2}{\epsilon} \left(\frac{\mathbf{q}_{i\perp}^2}{\mu^2}\right)^{\epsilon} + \mathcal{O}(\epsilon)$$

But consider the case where one emitted gluon is soft:

$$|\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_n Q}|^2 \xrightarrow[MRK]{} \frac{4g_s^2 \to 0}{p_i^2} \frac{4g_s^2 C_A}{\mathbf{p}_i^2} |\mathcal{M}_{\text{HEJ}}^{(0)qQ \to qg_1 \cdots g_{i-1}g_{i+1} \cdots g_n Q}|^2$$

Integrating over the soft phase space gives

$$\int_{y_{i-1}}^{y_{i+1}} \int_0^\lambda \frac{d^{2+2\epsilon} \mathbf{p} \mu^{-2\epsilon}}{(2\pi)^{2+\epsilon}} \frac{4g_s^2 C_A}{\mathbf{p}_i^2} = \frac{g_s^2 C_A}{(2\pi)^{2+2\epsilon}} (y_{i+1} - y_{i-1}) \left[\frac{\pi^{\epsilon}}{\Gamma(1+\epsilon)} \frac{1}{\epsilon} \left(\frac{\lambda^2}{\mu^2} \right)^{\epsilon} \right]$$

Meanwhile, the hard matrix element $|\mathcal{M}_{\text{HEJ}}^{(0)qQ \rightarrow qg_1 \cdots g_{i-1}g_{i+1} \cdots g_n Q}|^2$ contains

$$\exp(2\alpha(q_i)(y_{i+1} - y_{i-1})) = \frac{-g_s^2 C_A}{(2\pi)^{2+2\epsilon}}(y_{i+1} - y_{i-1}) \left[\frac{\pi^{\epsilon} \Gamma(1-\epsilon)}{\epsilon} \left(\frac{\mathbf{q}_i^2}{\mu^2}\right)^{\epsilon}\right] + \mathcal{O}(\epsilon)$$

• At large rapidity separation between final state particles, resummation becomes important.

- At large rapidity separation between final state particles, resummation becomes important.
- HEJ is a framework that incorporates these effects to LL accuracy, and currently allows matching to LO fixed-order calculations.

- At large rapidity separation between final state particles, resummation becomes important.
- HEJ is a framework that incorporates these effects to LL accuracy, and currently allows matching to LO fixed-order calculations.
- My current work is on extending this accuracy by further matching to NLO calculations, in particular for W boson production in association with multiple jets at the LHC.

- At large rapidity separation between final state particles, resummation becomes important.
- HEJ is a framework that incorporates these effects to LL accuracy, and currently allows matching to LO fixed-order calculations.
- My current work is on extending this accuracy by further matching to NLO calculations, in particular for W boson production in association with multiple jets at the LHC.
- This is achieved by first limiting the number of real emissions to 1, and truncating the exponentiated virtual corrections to 1st order in α_s : This is the all-orders prediction of HEJ truncated to NLO.

- At large rapidity separation between final state particles, resummation becomes important.
- HEJ is a framework that incorporates these effects to LL accuracy, and currently allows matching to LO fixed-order calculations.
- My current work is on extending this accuracy by further matching to NLO calculations, in particular for W boson production in association with multiple jets at the LHC.
- This is achieved by first limiting the number of real emissions to 1, and truncating the exponentiated virtual corrections to 1^{st} order in α_s : This is the all-orders prediction of HEJ truncated to NLO.
- Schematically, we can then reweight the all-orders prediction of HEJ by the ratio NLO/HEJ@NLO. This should give an improved description of data at the LHC.

- At large rapidity separation between final state particles, resummation becomes important.
- HEJ is a framework that incorporates these effects to LL accuracy, and currently allows matching to LO fixed-order calculations.
- My current work is on extending this accuracy by further matching to NLO calculations, in particular for W boson production in association with multiple jets at the LHC.
- This is achieved by first limiting the number of real emissions to 1, and truncating the exponentiated virtual corrections to 1^{st} order in α_s : This is the all-orders prediction of HEJ truncated to NLO.
- Schematically, we can then reweight the all-orders prediction of HEJ by the ratio NLO/HEJ@NLO. This should give an improved description of data at the LHC.

• Thanks for your attention!