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In the 1950's Tulio Regge studied the quantum mechanical amplitude for 2—2 scattering in the limit of
s — oo while keeping t fixed.

This is now known as the Regge Limit.

In this limit, the s dependence takes a simple form:

M(s,t) — f(t)s*®

S

This phenomenon is now known as Reggezation.

[1] T. Regge. Il Nuovo Cimento, 14:951, 1959.



A POTENTIAL PROBLEM

When we have a large separation between two scales, we generically get large logarithms of their ratio at all
orders in fixed order perturbative QFT.
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This result is independent of the type of particle scattering: For gluon scattering the only difference is a
change in the color factors.
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a - - I
b - - 2
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This result is independent of the type of particle scattering: For gluon scattering the only difference is a
change in the color factors.

For later use we introduce the notation S to mean the MO0Q9Q _ 2pA A S0)9@—qQ

spinor-string content of the leading order amplitude: Ystcrcat cacy +
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APPLICABILITY OF MRK LIMIT?
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[3] Andersen, Smillie, arXiv:0908.2786
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large but finite energies of the LHC:




THE APPROACH OF HEJ TO REAL EMISSIONS

Why not reinstate the full S© instead of using S< a, ?

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

/Vp((h, @) =— (@1 + q2)° \

p 2 . )
+pa( G P2Py P2 p3>+pa<—>p1
2 \P2°Pa Da'DPb  DPa-D3
p 2
p q P2 Do . P2 D1
- ”(p2 + + )—pmpg
2

2 . ‘ Dy .
\ Po Db P Pov - P1 /
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These are the steps taken by the High Energy Jets framework in order to better describe collisions at the
large but finite energies of the LHC:
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What effect do these changes have?




AN IMPROVED DESCRIPTION
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VIRTUAL CORRECTIONS IN THE REGGE LIMIT
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VIRTUAL CORRECTIONS IN HEJ

We apply the exponential factor to each #channel gluon:
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REGULARISATION OF DIVERGENCES

The factor a is infra-red divergent:
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Thanks for your attention!




