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In this limit, the s dependence takes a simple form:

This phenomenon is now known as Reggezation.
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A POTENTIAL PROBLEM
When we have a large separation between two scales, we generically get large logarithms of their ratio at all 
orders in fixed order perturbative QFT.  
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For large energy collisions we need to sum these logarithmic contributions to all orders in order to ensure 
our perturbative series converges.
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This result is independent of the type of particle scattering: For gluon scattering the only difference is a 
change in the color factors.
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LEADING ORDER IN THE REGGE LIMIT

For later use we introduce the notation 𝑆 to mean the 
spinor-string content of the leading order amplitude:

This result is independent of the type of particle scattering: For gluon scattering the only difference is a 
change in the color factors.
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ONE REAL EMISSION IN THE MRK LIMIT

MRK

[2] Lipatov, Sov. J. Nucl. Phys. 23, 1976 6



n REAL EMISSIONS IN THE MRK LIMIT
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APPLICABILITY OF MRK LIMIT?

[3] Andersen, Smillie, arXiv:0908.2786 8
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THE APPROACH OF HEJ TO REAL EMISSIONS
Why not reinstate the full 𝑆(0) instead of using 𝑆𝑀𝑅𝐾

(0)
? 

Why not reinstate 4-momenta in the Lipatov vertex, and restore symmetry?

These are the steps taken by the High Energy Jets framework in order to better describe collisions at the 
large but finite energies of the LHC: 

What effect do these changes have?
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AN IMPROVED DESCRIPTION

10[3] Andersen, Smillie, arXiv:0908.2786



VIRTUAL CORRECTIONS IN THE REGGE LIMIT

[4] Fadin, Kuraev, and Lipatov, Phys. Lett. B60 (1975) 50–52

MRK
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NnLO VIRTUAL CORRECTIONS IN THE REGGE LIMIT
The pattern continues to higher orders:
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VIRTUAL CORRECTIONS IN HEJ
We apply the exponential factor to each t-channel gluon:

. . .

13



REGULARISATION OF DIVERGENCES
The factor 𝛼 is infra-red divergent:
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REGULARISATION OF DIVERGENCES
The factor 𝛼 is infra-red divergent:

But consider the case where one emitted gluon is soft:

Integrating over the soft phase space gives

Meanwhile, the hard matrix element                                             contains
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• Thanks for your attention!


