

In collaboration with Steve King, Stefano Moretti PRD 97 (2018) no.11, 115027

Introduction

- ullet Several breaking patterns for SO(10) to SM
- The gauge group $SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$ may survive down to TeV scales, this is the "BLR" model
- More popular is B-L model, $U(1)_Y \times U(1)_{B-L}$
- Both B-L and BLR offer Z', which we may compare at the LHC

$U(1)_{B-L}$ Review

- Gauge group, $G_{BL} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- Cannot be embedded into any known GUT theory
- Particle content: MSSM and in addition,

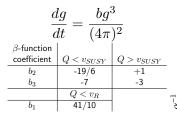
Chiral Superfield		Spin 0	Spin 1/2	G_{B-L}
RH Sneutrinos / Neutrinos (x3) Bileptons/Bileptinos	$\hat{ u}$ $\hat{\eta}$ $\hat{ar{\eta}}$	$egin{array}{c} ilde{ u}_R^* & \eta & & & & & & & & & & & & & & & & & $	$egin{array}{c} u_R \ ilde{\eta} \ ilde{ ilde{\eta}} \end{array}$	$ \begin{array}{c} (1,1,0,\frac{1}{2}) \\ (1,1,0,-1) \\ (1,1,0,1) \end{array} $
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
BLino / B' boson		$ ilde{B}'^0$	B'^0	(1 1 , 0, 0)

- \bullet However, Z^\prime will not interact with the 2HDM sector, as the Higgs have B-L=0
- Type-I see-saw explains light neutrino mass

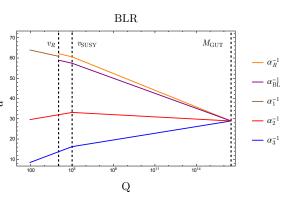
BLR Review

- $SO(10) \rightarrow SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$
- At TeV scale, $U(1)_R \times U(1)_{B-L} \to U(1)_Y$, broken by new Higgs $\chi_R^{1,2}$

Particle	T_{3L}	T_{3R}	T_{B-L}	$Y = T_{3R} + T_{B-L}$	$Q = T_{3L} + Y$
$ u_R$	0	+1/2	-1/2	0	0
χ^1_R	0	-1/2	+1/2	0	0
$egin{array}{c} \chi_R^1 \ \chi_R^2 \end{array}$	0	+1/2	-1/2	0	0
\widetilde{S}	0	0	0	0	0
$\begin{pmatrix} & & & & \\ & & & & \end{pmatrix}$	+1/2	+1/2	0	+1/2	+1
$H \begin{cases} H_u = \begin{pmatrix} \varphi_u \\ \phi_u^0 \end{pmatrix}_L \end{cases}$	-1/2	+1/2	0	+1/2	0
$\left(\phi_{0}\right)$	+1/2	-1/2	0	-1/2	0
$\left(H_d = \begin{pmatrix} \varphi_d \\ \phi_d^- \end{pmatrix}\right)_L$	-1/2	-1/2	0	-1/2	-1


Non-SUSY BLR content

- ullet Z' will interact with 2HDM, as it is charged under T_{3R}
- Light neutrino mass explained by linear see-saw mechanism, require additional SM singlets S, which do not affect phenomenology

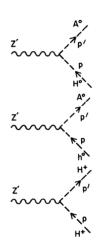

Simon J. D. King SO(10) at the LHC 19 December, 2019 4 / 14

Renormalisation Group Equations - BLR

- ullet Multiple scales: BLR breaking and separated SUSY scale
- $\bullet \ \alpha_1^{-1} = \frac{3}{5}\alpha_R^{-1} + \frac{2}{5}\alpha_{BL}^{-1}$

β -function coefficient	$v_R < Q < v_{SUSY}$	$Q > v_{SUSY}$
b_R	13/3	15/2
b_{BL}	17/4	27/4

5 / 14


^{*}One-loop β functions, no threshold corrections, gauge-kinetic mixing included

BLR at the LHC - Z' Higgs

• Z' coupling to 2HDM

$$\mathcal{L}_{Z',\text{scalars}} = (D_{\mu}\Phi_{1})^{\dagger}(D_{\mu}\Phi_{1}) + (D_{\mu}\tilde{\Phi}_{2})^{\dagger}(D_{\mu}\tilde{\Phi}_{2})$$
$$D_{\mu} = \partial_{\mu} - i\frac{g_{Y}}{s_{BL}c_{BL}}(T_{3R} - s_{BL}^{2}\frac{Y}{2})$$

Vertex	$g_{Z'S_1S_2}$
$Z'H^0A^0$	$-g_R\cos\theta_{B-L}\sin(\beta-\alpha)$
	2
$Z'h^0A^0$	$g_R \cos \theta_{B-L} \cos(\beta - \alpha)$
	2
$Z'H^+H^-$	$g_R \cos heta_{B-L}$
2 11 11	2

 \bullet The Feynman rule for the vertex is given by $(g_{Z'S_1S_2})(p+p')_{\mu}$

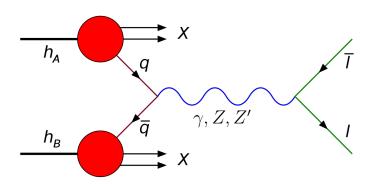
BLR at the LHC - Z' Fermions

- Z' coupling to fermions from $U(1)_R \times U(1)_{B-L} \to U(1)_Y$
- \bullet These two groups mix to produce SM hypercharge gauge boson and a massive Z'. The coupling of fermions to Z' is †

$$-\mathcal{L}_{\rm BLR}^{Z'} = Z'_{\mu} \bar{f} \gamma^{\mu} g_Y \left(\cot \theta_{BL} T_{3R} - \tan \theta_{BL} T_{B-L} \right) f$$

• May write this in terms of vector (L+R) and axial (L-R) couplings

$$-\mathcal{L}^{Z'} = Z'_{\mu} \bar{f} \gamma^{\mu} \frac{1}{2} (\bar{g}_{V}^{f} - \bar{g}_{A}^{f} \gamma^{5}) f$$

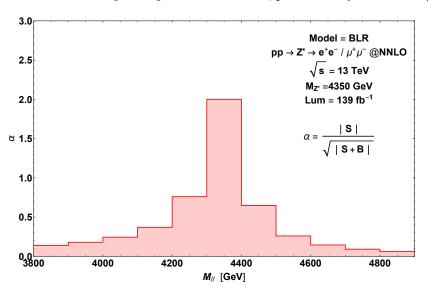

Couplings determined using the SARAH program to calculate vertices

Mode	el Gauge Coupling	\bar{g}_V^u	\bar{g}_A^u	\bar{g}_V^d	\bar{g}_A^d	\bar{g}_V^e	\bar{g}_A^e	$\bar{g}_V^{ u}$	$ar{g}_A^ u$
	$L = g_{BL} = 0.592$								
BLR	$g_R = 0.448,$	-0.0103	-0.135	-0.279	0.135	0.300	0.135	0.217	0.217
	$g_{BL} = 0.459$			•					

 $^{^\}dagger \mbox{For this talk},$ we neglect gauge-kinetic mixing, but all numerical results take this into account

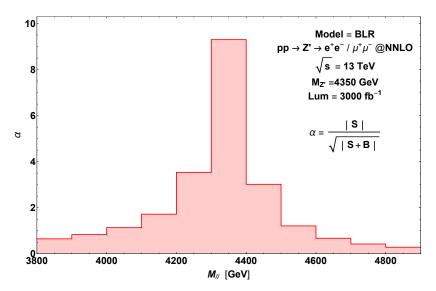
Drell-Yan

- The most promising channel to search for Z's at the LHC is Drell-Yan production, $pp \to \gamma, Z, Z' \to e^+e^-, \mu^+\mu^-$
- In this work, we include interference $[S = (pp \to \gamma, Z, Z' \to e^+e^-, \mu^+\mu^-) - (pp \to Z, \gamma \to e^+e^-, \mu^+\mu^-)]$ and finite width effects †

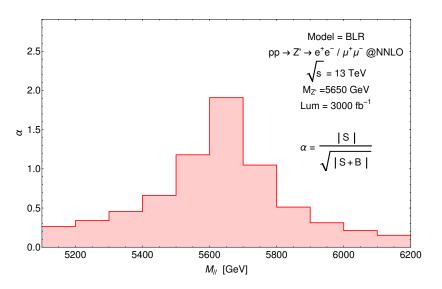


[†]Same code used as in 1504.01761

8 / 14


Drell-Yan Results - I

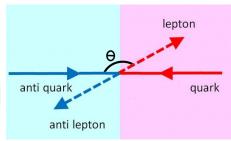
• Set Z' mass using 2σ significance $\to M_{Z'} \gtrsim 4350 {\rm GeV}$ (current limit)


Drell-Yan Results - II

• During the HL-LHC, this Z' may be easily seen!

Drell-Yan Results - III

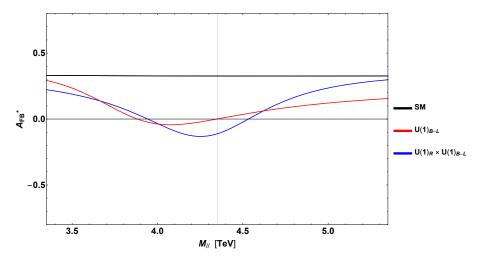
ullet Final mass exclusion at 2σ from HL-LHC is $M_{Z'}\gtrsim 5.6$ TeV



Drell-Yan & AFB

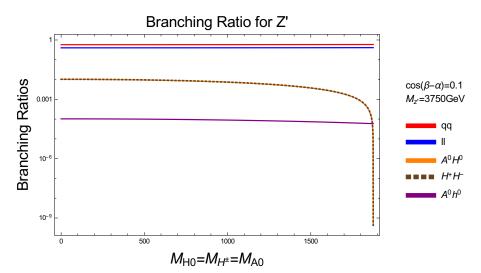
- ullet If a Z^\prime is discovered, one needs to differentiate to which model it belongs
- To characterise different models, one may measure the Forward-Backward Asymmetry, which varies depending on the specific vector and axial couplings

$$A_{FB} \equiv \frac{d\hat{\sigma}_F - d\hat{\sigma}_B}{d\hat{\sigma}_F + d\hat{\sigma}_B}, \quad d\hat{\sigma}_{F,B} = \int_{0,-1}^{1,0} \frac{d\hat{\sigma}}{d\cos\theta} d\cos\theta$$



AFB Results

ullet The purely vector-like couplings for the B-L model allows one to distinguish it from the BLR in the continuous case


AFB Results

• At HL-LHC, including statistical errors, $\delta A_{FB} = \sqrt{1-A_{FB}^2/N}$, one may be able to disentangle B-L and BLR models

Higgs Results

 Exotic Z' decays in the BLR to Higgses may not only differentiate models, but also, the Z' acts as a portal to the 2HDM!

Conclusions

- The BLR is a well motivated model, with motivations from GUT theories
- Low scale phenomenology of Z' is an interesting way to probe different high-scale models
- Identifying which model a Z' belongs to may become an important task in the near future, as candidates undetectable now offer clear signals in the next runs of the LHC

Backup Slides - β functions

$$\frac{dg_R}{dt} = \frac{1}{(4\pi)^2} \frac{15g_R^3}{2}, \qquad (1)$$

$$\frac{d\tilde{g}}{dt} = \frac{1}{(4\pi)^2} \left[\left(\frac{27}{4} g_{BL}^2 - \sqrt{\frac{3}{2}} g_{BL} \tilde{g} + \frac{15}{2} \tilde{g}^2 \right) \tilde{g} + \left(-\sqrt{\frac{3}{2}} g_{BL} + 15 \tilde{g} \right) g_R^2 \right]$$

(2)

$$\frac{dg_{BL}}{dt} = \frac{1}{(4\pi)^2} \left(\frac{27}{4} g_{BL}^2 - \sqrt{\frac{3}{2}} g_{BL} \tilde{g} + \frac{15}{2} \tilde{g}^2 \right) g_{BL}. \tag{3}$$

Simon J. D. King SO(10) at the LHC 19 December, 2019 14 / 14

Backup Slides - LHC Cuts

- No rapidity cut on dilepton pair
- NNLO in QCD calculating using WZPROD and CTEQ for pdfs
- ullet We include published acceptance imes efficiency factors $(A imes \epsilon)$
- \bullet CMS analysis uses dedicated cut on invariant mass $|M_{\bar{l}l}-M_{Z'}|\leq 0.05\times E_{LHC} \text{ to keep error in neglecting finite width and interference effects below }10\%$
- ullet Including this effect we reproduce CMS limits within 1-2%

Backup Slides - Gauge-Kinetic Mixing

The kinetic sector for a gauge group $U(1)_1 \times U(1)_2$ will have a mixed term:

$$\begin{split} \mathcal{L}_{\rm kin} &= -\frac{1}{4} F_{\mu\nu}^{A_1} F_{A_1}^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{A_2} F_{A_2}^{\mu\nu} - \frac{\kappa}{2} F_{\mu\nu}^{A_1} F_{A_2}^{\mu\nu} \\ \mathcal{L}_{\rm int} &= \bar{\psi}_f \gamma_\mu Q_f^1 g_1 A_1^\mu \psi_f + \bar{\psi}_f \gamma_\mu Q_f^2 g_2 A_2^\mu \psi_f \end{split}$$

The mixed kinetic term may be rotated away:

$$\mathcal{L}_{\rm kin} = -\frac{1}{4} F_{\mu\nu}^{B_1} F_{B_1}^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{B_2} F_{B_2}^{\mu\nu}$$

$$\mathcal{L}_{\text{int}} = \bar{\psi}_f \gamma_\mu (g_{11} Q_f^1 + g_{21} Q_f^2) B_1^\mu \psi_f + \bar{\psi}_f \gamma_\mu (g_{12} Q_f^1 + g_{22} Q_f^2) B_2^\mu \psi_f$$