UK Activities in Neutrinoless ββ Decay

S. Biller, Oxford University PPAP Community Meeting 2019

We don't know why

- Why are all V's left-handed?
- \sim What is the mass ordering of V states?
- What are the absolute neutrino masses?
- Why are V masses so small?
- \sim How do V's get mass in the first place?
- $^{\circ}$ Is helicity the only difference between V's and V's?
- $^{\circ}$ To what extent do V's violate symmetries such as CP?

The Paradigm:

р

 \mathbf{p}

 d_R

 u_L

 e_L

 e_L

 u_L

Effective Majorana mass $\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left| M_{\bullet}^{0\nu} \right|^{2} \left(\frac{m_{\beta\beta}}{m_{e}}\right)^{2}$

Exactly calculable, <u>model-independent</u> phase space factor accounting for different momentum distributions corresponding to different isotope endpoints and the impact of the nuclear charge on the produced electrons.

Not so exactly calculable, <u>model-dependent</u> matrix element for the transition. Many different estimations, even for the "standard mechanism." Proportional to g_A^2 , which might entail an effective "quenching."

What is the best way to represent this and to fairly compare across different isotopes when presenting experimental results?

Current Leading Bounds

New Physics Sensitivity: Phase-Space Weighted Half-Life

Tracker-Calorimeter Technique

- Source separated from detector: (almost) any solid isotope can be hosted.
- Generally poorer energy resolution than "homogeneous" detectors such as HPGe and bolometers.
- Full topological event reconstruction including e[±], γ-ray and α-particle identification.

- Strong background suppression by particle identification, event characterisation & timing.
- Ability to disentangle different mechanisms for 0vββ, by looking at variables other than ΣE.

Recent NEMO-3 Highlight: ⁸²Se

⁸²Se

⁸²Br

⁸²Kr

HSD : many intermediate excited states contribute

Final results on ⁸²Se (SuperNEMO isotope):

$$T_{1/2}^{2\nu\beta\beta} = 9.39 \pm 0.17 (\text{stat.}) \pm 0.58 (\text{syst.}) \times 10^{19} \text{ years}$$

Assuming **SSD**. World' most precise measurement.

$$T_{1/2}^{0\nu\beta\beta} > 2.5 \times 10^{23}$$
 years (90%C.L.)

Discovering the mechanism behind $2\nu\beta\beta$:

SSD : single intermediate 1+ state dominates

SuperNEMO Prototype Status

- Source foils & calibration system installed.
- Detector closed and fully cabled.
- Calorimeter commissioning is advanced.

SuperNEMO prospects

In case of a discovery of $0\nu\beta\beta$ at $<m_v>\sim 50$ meV, SuperNEMO technology is

- Essential to determine the 0vββ mechanisim
- The best way to verify the observation in multiple isotopes

Quenching of axial vector coupling constant g_A in heavy nuclei - Not well understood, and a hot topic in the field

- $2\nu\beta\beta$ rate has a strong g_A dependence

$$\left(T_{1/2}^{2\nu}\right)^{-1} \simeq \left(g_A^{\text{eff}}\right)^4 |M_{\text{GT}}^{2\nu}|^2 G_0^{2\nu}$$
Include second term in expression for decay rate
$$(T_{1/2}^{2\nu})^{-1} \simeq \left(g_A^{\text{eff}}\right)^4 |(M_{GT}^{2\nu})^2 G_0^{2\nu} + M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu} |$$

Large Enriched Germanium Experiment for 0vßß Decay

Sensitivity Goals

- 10²⁷ yrs: 200kg (requires bkgd reduction factor of 3 from GERDA)
- 10²⁸ yrs: 1000kg (requires further bkgd reduction factor of 6 from LEGEND 200)

LEGEND-200 in GERDA cryostat. Deployment 2021.

Large Enriched Germanium Experiment for 0vßß Decay

LEGEND-200 *will* be one of the (few) next-generation $0\nu\beta\beta$ experiments :

- Exciting and experimentally plausible discovery potential.
- Strong momentum with LEGEND-200 timetable already secure.
- The UK has played an important role already :
 - Early ⁷⁶Ge vendor assays.
 - IB Chair.
 - Innovative detector & holder designs.
- Opportunity for interdisciplinary UK team (NP & PP) to make a major impact.

Lancaster Liverpool Oxford KCL Sussex

Reactor neutrinos (will resolve △// tensio
 Low energy solar neutrinos
 Geo neutrinos
 Supernova neutrinos
 Invisible modes of nucleon decay

 $0\nu\beta\beta$

¹³⁰**Te-loaded scintillator** Concept originated in UK (Biller & Chen, 2012)

• ¹³⁰Te is the most cost effective isotope:

Enriched 136 Xe ~ \$20,000 /kg of isotope Natural Te (34.5% 130 Te) ~ \$ 150 /kg of isotope

- ¹³⁰Te has good predicted matrix element values (better than ¹³⁶Xe) and a good phase space factor (comparable to ¹³⁶Xe and ~6 times better than ⁷⁶Ge)
- Liquid scintillator is the most cost effective and scalable 0vββ detection technology

Simple synthesis
Single safe, distillable chemical
Low radioactivity levels
Minimal optical absorption
High light levels at 0.5% Te Loading

Scintillator purification system operational

Te purification and loading plants construction finished (starting commissioning)

ansported under esting one sample

Recent Water Results

PHYSICAL REVIEW D 99, 012012 (2019)

Measurement of the ⁸B solar neutrino flux in SNO + with very low backgrounds

PHYSICAL REVIEW D 99, 032008 (2019)

Search for invisible modes of nucleon decay in water with the SNO+ detector

	Spectral analysis	Counting analysis	Existing limits
n	$2.5 \times 10^{29} \text{ y}$	2.6×10^{29} y	5.8×10^{29} y [9]
р	3.6×10^{29} y	3.4×10^{29} y	2.1×10^{29} y [10]
pp	4.7×10^{28} y	4.1×10^{28} y	5.0×10^{25} y [11]
pn	2.6×10^{28} y	2.3×10^{28} y	2.1×10^{25} y [13]
nn	1.3×10^{28} y	$0.6 \times 10^{28} \text{ y}$	1.4×10^{30} y [9]

Several other papers in preparation

6200kg

LAB fill in progress

Ready for Te loading next year

Other technical advances:

Cherenkov separation using slow fluors

Possible Future Beyond SNO+ Phase II:

In discussions with group about possible future deployment of Te in JUNO

Potential to have greatest reach of any experiment and begin to probe non-degenerate normal hierarchy!

So How Do The Future Prospects Look?

New Physics Sensitivity: Phase-Space Weighted Half-Life

