

NA62 status and plans

Chris Parkinson, for NA62-UK PPAP Community Meeting, Birmingham, September 2019

2

Outline

- 1. Introduction to NA62 and status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis
- 2. Other physics results and prospects
- 3. Future plans and big ideas

Motivation to study the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

• FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

• Very clean theoretically

wh

- Short distance contribution with tiny hadronic uncertainties.
- Complementarity with B physics in probing BSM flavour sector
- SM prediction [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \cdot 10^{-10}$$

2019

Community meeting

PPAP (

plans,

NA62 Status and

The NA62 experiment

• Measurement of incoming K^+ [$p_{K^+} = (75 \pm 1\%)$ GeV/c]

- Timing by **KTAG** ($\sigma_t \approx 70$ ps); position/momentum by **GTK**
- Measurement of outing π^+ [15 < p_{π^+} < 35 GeV/c]
 - Timing by **RICH** ($\sigma_t \approx 70$ ps); position/momentum by **STRAW**
- Hermetic photon veto (LAV, LKr, IRC, SAC): $\pi^0 \rightarrow \gamma \gamma$ suppression at 1.4×10^{-8}
- Particle identification (RICH, LKr, MUV, HASC): muon suppression at 1×10^{-8}
- Kinematic rejection at 1×10^{-3} for $K^+ \to \pi^+ \pi^0$ and 3×10^{-4} for $K^+ \to \mu^+ \nu(\gamma)$

UK involvement

- Spokesperson (Prof. C. Lazzeroni, Uni. Birmingham)
- Vice-spokesperson (Dr. G. Ruggiero, Uni. Lancaster)
- Coordination of the high-level (software) trigger
- Coordination of computing and software
- Coordination of 2 of 4 analysis working groups ($K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and rare decays)

• Other responsibilities:

- Full responsibility for the KTAG detector
- Full responsibility for the Run Control system
- Development and operation of the RICH/CHOD/MUV3 hardware trigger
- Run coordination: 3 of 12 (2017); 3 of 17 (2018);
- Responsibility for the GRID infrastructure (and production of simulated events)
- Editorial board membership: 3 of 10

019

eting

plans

NA62 status

Three years of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ data taking: **2016**: $\sim 1 \times 10^{11} K^+$ decays **2017**: $\sim 2 \times 10^{12} K^+$ decays **2018**: $\sim 4 \times 10^{12} K^+$ decays

NA62 Status and plans, PPAP Community meeting 2019

13 Sep. 2019

Status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis (2016)

- Result presented last year based on the 2016 data now published: Phys. Lett. B 791 (2019) 156
- UK leadership
- $1.21 \times 10^{11} K^+$ decays (5 × 10⁴ spills 10 × 10¹¹ protons per spill)
- $A(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \sim 4\%$
- $N^{exp} = 0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
- $N^{bkg} = 0.152^{+0.092}_{-0.033}|_{stat} \pm 0.013_{syst}$
- One event observed in signal region 2
- $BF(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ @ 95% CL

Status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis (2017)

- Analysis of the 2017 data has just finished. Results presented at Kaon conference on Tuesday
- Sample of $2 \times 10^{12} K^+$ decays collected over 160 days ($\sim 3 \times 10^5$ spills, 19×10^{11} protons per spill,

2019

eting

me

Community

PPAP

8

plans,

and

Status

NA62

UK leadership

Status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis (2017) UK leadership

- Analysis of the 2017 data has just finished. Results presented at Kaon conference on Tuesday
- Sample of $2 \times 10^{12} K^+$ decays collected over 160 days (~3 × 10⁵ spills, 19 × 10¹¹ protons per spill,

Status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis (2017)

• Final plot before unblinding. All background estimates validated in control regions

Status of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis (2017)

• Two events observed in the signal region!

UK leadership

Interpretation

- 2016+2017 data: s. e. s. = $(0.346 \pm 0.017) \times 10^{-10}$, $s^{obs} = 3$, $b^{exp} = 1.65 \pm 0.31$
- CLs limit @ 95% CL:
 - Observed: $BF(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10}$
 - Expected: $BF(K^+ \to \pi^+ \nu \bar{\nu}) < 1.62 \times 10^{-10}$
- Two-sided 68% band: $BF(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$
- Also $K^+ \rightarrow \pi^+ X, X \rightarrow inv$. at the π^0 mass:
 - Observed: $BF(\pi^0 \to inv.) < 4.4 \times 10^{-9} @ 90\% CL$
- Exploiting correlation between charged and neutral mode: Grossman-Nir limit: $BF(K_L \to \pi^0 \nu \bar{\nu}) < 8.14 \times 10^{-10} @ 90\% CL$

 $(\bar{\varrho}, \bar{\eta})$

 $K_L \to \pi^o \nu \bar{\nu}$

(0,0)

(1,0)

13 Sep. 2019

Future prospects (2018, LS2 onwards)

- 2018 prospects: $4 \times 10^{12} K^+$ decays, 20% gain in acceptance, optimisation of kaon mistagging
- Leading cause of background in the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis is upstream K^+ decays with pileup tracks

- After LS2:
 - Add 4th GTK station: better track fitting with higher efficiency, to identify dangerous pileup tracks
 - Redesign acromat: 3 magnet system (with different strengths), to block π^+ from GTK2 interactions
 - New detector: technology similar to photon veto, to tag $\pi^0 \rightarrow \gamma \gamma$ decays upstream
 - More kaons: run at nominal beam intensity with 30×10^{11} protons per spill

Search for heavy neutral lepton production

Based on 2016+17 data. UK leadership. First presented <u>at Kaon 2019</u>

Searches for lepton flavour/number violation

- Search for $K^+ \rightarrow \pi^- e^+ e^+$ and $K^+ \rightarrow \pi^- \mu^+ \mu^+$ using 2017 data
- UK leadership
- New limits @ 90% *CL* : $BF(K^+ \to \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ $BF(K^+ \to \pi^- \mu^+ \mu^+) < 4.2 \times 10^{-11}$

Phys. Lett. B797 (2019) 134794

019

 $\widetilde{\mathbf{N}}$

Community meeting

PPAP

plans,

and

NA62 Status

Search for other LFV/LNV processes

- Other LFV/LNV searches are ongoing, with UK leadership and excellent prospects
 - $K^+ \rightarrow \pi^- \mu^+ e^+$ and $K^+ \rightarrow \pi^+ \mu^- e^+$, $SES_{17} \approx 5 \times 10^{-11}$ (factor ~5 improvement on BNL-E865)
 - $K^+ \rightarrow e^- \nu \mu^+ \mu^+$, $SES_{17} \approx 5 \times 10^{-11}$ (first search for this mode)
 - $K^+ \rightarrow \mu^- \nu e^+ e^+$, $SES_{17} \approx 1 \times 10^{-10}$ (factor ≈ 100 improvement on PDG)
 - Analyses are not limited by backgrounds
 - Size of the full 2016–18 dataset is ≈3 times the 2017 dataset

Watch this space!

NA62 as a beam dump experiment

- NA62 (as NA62++) included in the Physics Beyond Colliders programme
- NA62 collaboration intends to collect 10^{18} protons on target before LS3
 - Ongoing discussion concerning how exactly this should be achieved
- **New ANTIO detector** under construction to veto muons produced in the TAX
- Studies to increase beam intensity by 20-50% above nominal
 - Detector safety/survivability currently being studied

What's the big idea?

- Big idea:
 - NA62 has initiated a feasibility study for running at considerably higher intensity
 - 4x higher in K^+ mode, 6x higher in K_L mode. Limited by radiation protection at CERN boundary
- Physics goals:
 - Improve precision on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - A complementary measurement of $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (complementary both to NA62, and the KOTO experiment at J-PARC)
- Completely new experiments are needed
- Both new experiments have a large commonality in terms of the upgrades required (hardware, readout) and are two aspects/phases of the same kaon facility

What's the big idea?

- Big idea:
 - NA62 has initiated a feasibility study for running at considerably higher intensity
 - 4x higher in K^+ mode, 6x higher in K_L mode. Limited by radiation protection at CERN boundary
- Physics goals:
 - Improve precision on $K^+ o \pi^+
 u \overline{
 u}$
- 4x more intensity means 4x more stringent timing requirements
 - Challenging for tracking, and most other detectors
 - Especially for detectors in the beam: KTAG and GTK
- However, these challenges are well aligned with other research in the UK (TORCH, LHC upgrades, ...)
 - KTAG: require single photon detection with ~ 40 ps resolution at a flux of 10 MHz/cm²
 - GTK: ~ 40 ps resolution, radiation hard (no need to improve precision though)

13 Sep. 2019

20

What's the big idea?

- Big idea:
 - NA62 has initiated a feasibility study for running at considerably higher intensity
 - 4x higher in K^+ mode, 6x higher in K_L mode. Limited by radiation protection at CERN boundary
- Physics goals:
 - A complementary measurement of $K_L o \pi^0
 u \overline{
 u}$
- The $K_L EVER$ experiment has been studied extensively " K_L Experiment for Very Rare events"

13 Sep. 2019

Summary

- 2016 measurement of $BF(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ now published: <u>Phys. Lett. B 791 (2019) 156</u>
- New measurement of $BF(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ [link]

 $BF(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10} @ 95\% CL$ $BF(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10} \text{ (two-sided 68\% band)}$ $BF(\pi^0 \to in\nu.) < 4.4 \times 10^{-9} @ 90\% CL$

- Broader physics programme with UK leadership:
 - World's best limits in heavy neutral lepton production [link]
 - World's best limits in LFV and LNV K⁺ decays: Phys. Lett. B797 (2019) 134794
- What's next:
 - Perform the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis on the 2018 data
 - Clear goals for Run 3: improve upstream background rejection, NA62++ beam dump experiment
 - Big ideas for after LS3: new experiment(s) required to study $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, $K_L \rightarrow \pi^0 \nu \bar{\nu}$