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Jets
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Physics Objective

I A good jet cluttering algorithm will accurately match the kinematics
of the partons chosen as tags.

I This accuracy should vary smoothly with the cut-off parameter.
I The jets formed should replicate higher level shape variables.

,
Jet Clustering with Spectral Clustering 3/19



Physics Objective

I A good jet cluttering algorithm will accurately match the kinematics
of the partons chosen as tags.

I This accuracy should vary smoothly with the cut-off parameter.

I The jets formed should replicate higher level shape variables.

,
Jet Clustering with Spectral Clustering 3/19



Physics Objective

I A good jet cluttering algorithm will accurately match the kinematics
of the partons chosen as tags.

I This accuracy should vary smoothly with the cut-off parameter.
I The jets formed should replicate higher level shape variables.

,
Jet Clustering with Spectral Clustering 3/19



Results
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Clustering in ML

Many attempts have been made to write a ’good’ clustering algorithm.
Most of them are not hierarchical, they are based on fitting a predefined
model. This poses a challenge for jet clustering, we do not have a
predefined number of clusters.
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Clustering comparison

Figure: Taken from
https://towardsdatascience .com/the−5−clustering−algorithms−data−scientists−need−to−know−a36d136ef68?gi=30cb951e7fbc
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Aim of clustering
Let our points be nodes of a graph and the vertices carry a measure of
the affinity, ai,j .
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Aim of clustering

We wish to split the points such that the severed affinities are minimised.

Often the optimum split by this metric will isolate one point. To avoid
this small clusters are penalised.
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Aim of clustering

These criteria result in RatioCut. If W (A,B) =
∑

i∈A,j∈B ai,j is the
sum of the affinities that cross from A to B, and |A| is the number of
nodes in A;

RatioCut(A1, A2, . . . An) ≡ 1
2

n∑
i=1

W (Ai, Āi)
|Ai|

In the case of disconnected components (with zero affinity between
clusters) this can be solved for with the eigenvalues of the matrix known
as the graph Laplacien.
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Ideal case
Let us imagine a graph, disconnected in n clusters.
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Ideal case
Let us imagine a graph, disconnected in n clusters. Membership of
cluster k is determined by the indicator vector hk;

hi,k =
{

1/
√
|Ak|, if point i ∈ Ak

0, otherwise

The graph is represented by the graph Laplacien;

L =


∑
a1,i −a1,2 −a1,3 . . .

−a1,2
∑
a2,i −a2,3

−a1,3 −a2,3
∑
a3,i

...
. . .


Then

h′
kLhk = 1

|Ak|
∑

i∈Ak,j∈Ak

(
δi,j

∑
l

al,i − ai,j

)
= W (Ak, Āk)

|Ak|
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Ideal case

h′
kLhk = 1

|Ak|
∑

i∈Ak,j∈Ak

(
δi,j

∑
l

al,i − ai,j

)
= W (Ak, Āk)

|Ak|

Then stack the of all clusters together

h′
kLhk = (H ′LH)kk

and the RatioCut aim discribed earlier is the trace;

RatioCut(A1, A2, . . . An) ≡ 1
2

n∑
i=1

W (Ai, Āi)
|Ai|

= Tr(H ′LH)

Where H ′H = I. Trace minimsation in this form is done by finding the
eigenvectors of L with smallest eigenvalues.
Generalising this to a graph that is not disconnected is just relaxing the
requirements on the form of the indicator vectors; hk.
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Process

To find n clusters from m points;
1. Identify affinities between all points; ai,j .

2. Construct the graph Laplacien;

L =


∑
a1,i −a1,2 . . .

−a1,2
∑
a2,i

...
. . .


3. Calculate the eigenvectors v of L corresponding to the n+ 1

smallest eigenvalues.
4. Stack the eigenvectors (aside from the first) v into a matrix E that

is n by m. Call E the eigenspace, each point in the original dataset
is represented by one row.

5. Cluster in the eigenspace, E, using knn.
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Physics Process

To find ? clusters from m points;
1. Identify affinities between all points; ai,j .
2. Construct the graph Laplacien;

L =


∑
a1,i −a1,2 . . .

−a1,2
∑
a2,i

...
. . .


3. Calculate the eigenvectors v of L corresponding to the q + 1

smallest eigenvalues.
4. Stack the eigenvectors (aside from the first) v into a matrix E that

is q by m. Call E the eigenspace, each point in the original dataset
is represented by one row.

5. Cluster in the eigenspace, E, using with a hierarchical method.
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Conclusions

This is a well motivated clustering method.
I The best hyperparameters need to be identified.
I It should be tested for IRC safety.
I It’s replication of event shape variables should be tested.

These hurdles aside, the method shows potential when compared to
traditional jet clustering algorithms.

Thank you for listening.
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