

Models for Light New Physics

Tim M.P. Tait

University of California, Irvine

YETI 2020
January 7, 2020

Outline

Motivations for Light New Physics

- Searching for the Unknown
- Dark Matter
- Experimental Anomalies
- Light Vector Particles
- Case study:The ATOMKI Be-8 anomaly.

Open Discussion

Motivations

The Unknown?

- The most basic reason to consider theories with light particles is simply to better understand what experiments tell us is still allowed.

Light particles must be very weakly coupled to have escaped detection up until this point.

- "Light" can mean different things to different physicists. For me it means < about GeV.
- We can think of the search for them as complementary to high energy searches such as at the LHC.

- Light physics can in principle be produced in existing experiments.

Dark Matter

- Since we know essentially nothing about dark matter, it is possible that it is a very light particle.
- Existing limits from galactic dynamics are around $\sim \mathrm{eV}$ for fermions, and $\sim 10^{-20} \mathrm{eV}$ for bosons.
- If the dark matter is produced in the early Universe through freeze-out, evading constraints from the CMB typically requires that there are also light dark forces.

Mass
 Spin
 Stable?
 Couplings:

(d Gravity
Weak Interaction?
Higgs?
Quarks / Gluons?
\square Leptons?
Thermal Relic?

Dark Matter

MeV Dark Matter

MeV Dark Matter

The Integral satellite measures the sky in hard X-rays. The line at 5 II keV from e+e- annihilation tracks production of non-relativistic positrons.

They see an excess that correlates with the Galactic center, and could be a sign that dark matter annihilates into e+e-.
(To be fair, it could also be an astrophysical production mechanism).

To have the e+'s be non-relativistic, the dark matter mass can't be much more than the electron mass.

- Explaining the cross section can work if there is a mediator particle whose mass is also $\sim \mathrm{MeV}$.

Experimental Anomalies

- While there is no decisive laboratory experimental evidence for light new particles, a few that show some deviation could hint at physics beyond the Standard Model.
- A few examples of puzzling experimental results that could hint at light new physics include:
- Muon g-2

- π^{0}-> e+ e- (measured by KTeV)
- ATOMKI Nuclear Transitions in $\mathrm{Be}-8$ and $\mathrm{He}-4$.
- All three of these hint at $\sim \mathrm{MeV}$ mass particles with super-weak coupling to the SM.

Vector Particles

Vector Simplified Model

- A reasonably simple extension of the SM is to add a light vector particle: A^{\prime}.
- Quantum field theories of vector particles are a little bit delicate. If we write down interactions indiscriminately, we typically get a theory which is unphysical.
- The usual trick to avoid these problems is to associate the new vector with a gauge symmetry group. [For example a U(I).]
- Including only gauge-invariant terms in the Lagrangian avoids unphysical behavior.
- Then we need to specify how the symmetry acts on SM particles [their charges].

Dark Charge Assignment

- Each SM fermion species (Q, u, d, L, e)
[plus right-handed neutrinos if they exist]
 and the Higgs needs a charge.
- If there is a dark Higgs, we could define its charge as +1 .
- To avoid FCNC's, the fermions of each family are typically assigned the same charge. [But that is not essential].
- If the charges for Q, u, and d are equal,

$$
A_{\mu}^{\prime} \sum_{f} \bar{f}\left(c_{V}^{f} \gamma^{\mu}+c_{A}^{f} \gamma^{\mu} \gamma^{5}\right) f
$$

$$
c_{V}^{f} \equiv \frac{1}{2} g_{D}\left(Q_{f_{L}}+Q_{f_{R}}\right)
$$

$$
c_{A}^{f} \equiv \frac{1}{2} g_{D}\left(Q_{f_{L}}-Q_{f_{R}}\right)
$$ and L and e are equal, the theory will be vector-like. Otherwise, it will contain axial vector interactions.

$\mathcal{L}_{Y}=y_{u} H Q \bar{u}+y_{d} H^{\dagger} Q \bar{d}+y_{e} H^{\dagger} L \bar{e}$

- We need to make sure that we can generate the SM Yukawa interactions.

Allowed if, e.g.:

$$
Q_{H}=Q_{f_{R}}-Q_{f_{L}}
$$

Anomalies

- A Quantum field theory with fermions can violate symmetries which appear to be present in the Lagrangian (e.g. at tree level).
- The dangerous contributions appear as triangle diagrams of fermions with gauge bosons attached to the vertices.

- If this happens for a global symmetry, it means that the Noether current associated with it is not conserved.
- If it happens for a gauge symmetry, that symmetry is violated, and this leads us back to unphysical behavior. So we can't allow that!

Anomalies

- The cancellation of the anomalies requires that there are relations between the charges of the fermions in the theory:

$$
\sum_{\psi} Q_{\psi}^{3}=0 \quad \sum_{\psi} Q_{\psi} Y_{\psi}^{2}=0 \quad \sum_{\psi} Q_{\psi}^{2} Y_{\psi}=0
$$

$$
\sum_{\psi} Q_{\psi} T_{R_{\psi}}^{\mathrm{SU}(2)}=0
$$

Exercise: Prove that $U(I)_{B-L}$ is not anomalous if we add 3 RH neutrinos.

If the anomalies don't cancel summing over the SM fermions, additional fermions are necessary to make things cancel. They are often charged under the SM gauge groups (and have color and/or charge as a result). I often call those particles "anomalons".

Mass Mixing

- The dark vector particle could get its mass in part from the SM Higgs, and there are usually other contributions as well.
- For example a dark Higgs sector.
- For a U(I), a Stuckelberg mass.
- If Q_{H} is nonzero, after EWSB, the mass matrix contains mixing terms between the SM Z and the A^{\prime}.
- This implies the A^{\prime} picks up some of the Z boson's interactions, and the Z interactions are modified as well.

$$
\tan 2 \eta=\frac{-2 g_{D} Q_{H} v \hat{m}_{Z}}{\left(g_{D}^{2} Q_{H}^{2} v^{2}+\hat{m}_{A^{\prime}}^{2}\right)-\hat{m}_{Z}^{2}}
$$

- LEP constraints on the Z boson properties typically require such mixing to be less than about 10^{-3}.

$$
\begin{aligned}
& \hat{Z}_{\mu} J_{N C}^{\mu} \rightarrow\left(\cos \eta Z_{\mu}+\sin \eta A_{\mu}^{\prime}\right) \\
& \text { Where: } \quad J_{\mathrm{NC}}^{\mu}=\frac{e}{s_{W} c_{W}}\left(T_{3}-Q s_{W}^{2}\right)
\end{aligned}
$$

Kinetic Mixing

- In addition to mass mixing, the A^{\prime} could also pick up couplings through kinetic mixing.
- If it corresponds to a $\mathrm{U}(\mathrm{I})$ gauge symmetry, a kinetic term mixing with the Hypercharge force is gauge invariant, and thus allowed.
- In fact, if there are particles charged under both the dark group and hypercharge, such a term will be induced at the loop level.
- The parameter ε controls the size of the kinetic mixing.
- Going to the mass basis induces a coupling proportional to the photon's interactions.

$$
-\frac{1}{4} \hat{B}^{\mu \nu} \hat{B}_{\mu \nu}+\frac{\epsilon}{2 c_{W}} \hat{B}^{\mu \nu} \hat{F}_{\mu \nu}^{\prime}-\frac{1}{4} \hat{F}^{\prime \mu \nu} \hat{F}_{\mu \nu}^{\prime}
$$

$\hat{A}_{\mu} \rightarrow \hat{A}_{\mu}+\epsilon \hat{A}_{\mu}^{\prime}, \quad \hat{Z}_{\mu} \rightarrow \hat{Z}_{\mu}-\epsilon t_{W} \hat{A}_{\mu}^{\prime}, \quad A_{\mu}^{\prime} \rightarrow A_{\nu}^{\prime}$

In the limit of purely kinetic mixing, A' is usually called a "dark photon".

A' Coupling Recap

- As a recap, the couplings of the dark gauge boson to the SM fields receive three contributions:
- Directly from the charges of the SM fields:

$$
A_{\mu}^{\prime} \sum_{f} \bar{f}\left(c_{V}^{f} \gamma^{\mu}+c_{A}^{f} \gamma^{\mu} \gamma^{5}\right) f
$$

- Through mass-mixing with the \mathbf{Z} boson (if Q_{H} is nonzero):

$$
\hat{Z}_{\mu} J_{\mathrm{NC}}^{\mu} \rightarrow\left(\cos \eta Z_{\mu}+\sin \eta A_{\mu}^{\prime}\right) J_{\mathrm{NC}}^{\mu}
$$

- (If the charges allow SM Yukawa couplings, the axial part of these two pieces cancel each other. EXERCISE: Prove this statement!).
- Through kinetic mixing with the photon (if ε is nonzero):

$$
e \hat{A}_{\mu} J_{\mathrm{EM}}^{\mu} \rightarrow e\left(\hat{A}_{\mu}+\epsilon \hat{A}_{\mu}^{\prime}\right) J_{\mathrm{EM}}^{\mu}
$$

- The physical couplings of the A' are the sum of all three of these.

Experimental Constraints

- There is a wealth of data informing the parameter choices for light vector particles. Some of the important ones include:
- $(\mathrm{g}-2)_{\mathrm{e}}$ and $(\mathrm{g}-2)_{\mu}$, which is famously high by about 3.5σ and thus could be suggestive of target regions of parameter space in muon couplings.
- Atomic Parity Violation (APV) in cesium at $\mathrm{Q}^{2} \sim(30 \mathrm{MeV})^{2}$ which constrains products of $\mathrm{cq}_{\mathrm{v}} \times \mathrm{c}^{\mathrm{e}} \mathrm{A}$.
- Parity violation in Moller scattering by El58 at SLAC at Q² ~ (I00 MeV) $)^{2}$ which constrains the product $\mathrm{c}^{e} \vee \mathrm{X} \mathrm{C}^{e} \mathrm{~A}$.
- Neutrino-Electron scattering by Borexino and TEXONO at $\mathrm{Q}^{2} \sim(\mathrm{MeV})^{2}$ which constrains the product $\mathrm{c}^{\mathrm{V} v} \times \mathrm{c}^{\mathrm{v}}$, through interference with the SM process.
- Meson decays, such as searches for $\pi 0$-> YA' by NA48/2, which puts strong constraints on a combination of $c^{{ }^{u}} \mathbf{v}$ and $c^{d} v$, but much milder constraints on the axial vector interactions.

Experimental Constraints

- Meson decay π^{0}-> e+ e- as measured by KTeV. Since they see a $\sim 2.5 \sigma$ discrepancy with the SM, this favors specific choices of the couplings $\left(c^{u^{4}} A-c^{d} A\right) \times C^{e} A$ and mass of the A^{\prime}. (Also: there are constraints from η decays into e+e- and $\mu+\mu-$).
- The annihilation process e+e- -> $\mathrm{Y} \mathrm{A}^{\prime}$ at high intensity colliders (such as B-factories) puts a constraint on ($\mathrm{c}^{\mathrm{e}} \mathrm{v}^{2}+\mathrm{c}^{\mathrm{e}} \mathrm{A}^{2}$).
- Similarly, fixed target experiments can use the process ep-> ep A' through bremsstrahlung to also put a constraint on ($\mathrm{c}^{e} \mathrm{v}^{2}+\mathrm{c}^{e} \mathrm{~A}^{2}$).
- If $m_{A^{\prime}}>2 m_{\mu}$, the A^{\prime} can decay visibly into dimuons, which could be visible in decays of heavy vector mesons such as ψ or Υ-> γA^{\prime}. These put constraints on the ca couplings for the heavy quarks, c and b .
- Conversely, for $\mathrm{m}_{\mathrm{A}^{\prime}}<2 \mathrm{~m}_{\mathrm{e}}$, the A^{\prime} has only very suppressed decays to neutrinos or to 3γ 's. Generally there are strong constraints from stellar cooling bounds.

IR Benchmark \#|

All other couplings assumed to vanish.

Future Projections

All other couplings assumed to vanish.

IR Benchmark \#2

Possible to fit g -2 and KTeV .

Future Projections

IR Parameters, Projections

$$
c_{A}^{u}=10^{-3}, c_{A}^{d}=10^{-4}, c_{A}^{e}=c_{A}^{\mu}, c_{V}^{\mu}=8 \times 10^{-4}, c_{V}^{e}=2 \times 10^{-4}
$$

$m_{A^{\prime}}[\mathrm{MeV}]$

Case Study:ATOMKI XI7

Observation of Anomalous Internal Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson
A.J. Krasznahorkay, et al. PRL I 16,04250 I (20|6); arXiv: I $504.0 \mid 527$

Invariant Mass, mee $[\mathrm{MeV}]$

I'll explore a light spin-I particle with vector couplings as the X particle. Of course, this result needs experimental confirmation, and to rule out nuclear physics explanations.

In 1910.10459, they report evidence of a similar excess in a transition of He-4 for essentially the same mass of $\sim 17 \mathrm{MeV}$.

Dark Photon

- I decided (somewhat arbitrarily) to look at models with vector couplings.
- As we already saw, a simple model with vector couplings is the dark photon limit, where all of the SM charges are zero, and there is no mass mixing.
- There can still be kinetic mixing, and the entire parameter space in that case is the A^{\prime} mass and ε.
- However, this is strongly ruled out by NA48/2 for couplings big enough to explain ATOMKI results.

Proto-phobic Vectors

- We'd like to engineer away the bounds from NA48/2 without turning off couplings to first generation quarks altogether, which drives us to "proto-phobic" couplings:

- (Also note that axial vectors will naturally evade NA48/2, since their couplings to π^{0} do not go through the anomaly, and are thus suppressed by the small quark masses.)

Fit to ATOMKI

$$
\frac{\Gamma_{X}}{\Gamma_{\gamma}}=\frac{\left|\left(\varepsilon_{p}+\varepsilon_{n}\right) \beta_{1} M 1_{1, T=0}+\left(\varepsilon_{p}-\varepsilon_{n}\right)\left(-\alpha_{1} M 1_{1, T=1}+\beta_{1} \kappa M 1_{1, T=1}\right)\right|^{2}}{\left|\beta_{1} M 1_{1, T=0}-\alpha_{1} M 1_{1, T=1}+\beta_{1} \kappa M 1_{1, T=1}\right|^{2}} \frac{\left|\mathbf{k}_{X}\right|^{3}}{\left|\mathbf{k}_{\gamma}\right|^{3}}
$$

Nuclear Physics...

$$
g_{i} \equiv e \times \varepsilon_{i}
$$

To explain the ATOMKI results, one would like a coupling ε to neutrons of order 10^{-2} and one to protons < about 10^{-3}.

Lepton Couplings

Summary of IR Parameters

$$
\begin{aligned}
& \varepsilon_{u}=-\frac{1}{3} \varepsilon_{n} \approx \pm 3.7 \times 10^{-3} \\
& \varepsilon_{d}=\frac{2}{3} \varepsilon_{n} \approx \mp 7.4 \times 10^{-3} \quad \text { Protophobic to } \sim 10 \%
\end{aligned}
$$

$2 \times 10^{-4} \lesssim\left|\varepsilon_{e}\right| \lesssim 1.4 \times 10^{-3}$

$$
\left|\varepsilon_{\nu} \varepsilon_{e}\right|^{1 / 2} \lesssim 7 \times 10^{-5}
$$

EI4I and ($\mathrm{g}-2)_{\text {e }}$
TEXONO

Future Outlook

- Upcoming low energy experiments can probe the relevant parameter space...

Mu3e, phase 2 (starting 018)

LHCb, run 3
(202I-2023)

Darklight $\mathrm{e}+\mathrm{e}-\longrightarrow \mathrm{Y} \mathrm{X}$
(a few years?)

VEPP-3 (proposed) $\mathrm{e}+\mathrm{e}-\mathrm{Y} \mathrm{X}$

UV Model: U(I) Baryon

$$
\epsilon=-g_{B}+\delta
$$

- To begin with, take $\mathrm{U}(\mathrm{I})_{\mathrm{B}}$.
- By itself, this results in equal couplings to proton and neutron. The proton is neutralized if we tune the kinetic mixing parameter $\varepsilon=-g_{B}$.

$$
\begin{aligned}
\varepsilon_{u} & =\frac{1}{3} \varepsilon_{B}+\frac{2}{3} \varepsilon \\
\varepsilon_{d} & =\frac{1}{3} \varepsilon_{B}-\frac{1}{3} \varepsilon \\
\varepsilon_{\nu} & =0 \\
\varepsilon_{e} & =-\varepsilon .
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon_{u} & =-\frac{1}{3} \varepsilon_{B}+\frac{2}{3} \delta \\
\varepsilon_{d} & =\frac{2}{3} \varepsilon_{B}-\frac{1}{3} \delta \\
\varepsilon_{\nu} & =0 \\
\varepsilon_{e} & =\varepsilon_{B}-\delta,
\end{aligned}
$$

- This tuning is $\mathrm{O}(10 \%)$ to successfully evade NA48/2.
- The electron couplings tend to be generically a bit too big.
- (However, the muon couplings are in the ballpark needed to address ($\mathrm{g}-2$) μ !)
- Neutrino couplings are naturally zero.

U(I) Baryon Anomalons

- Cancelling anomalies requires us to add more fermions.
- A set of fermions which look like a chiral family of leptons (but carrying baryon number) will do the trick.
- The $\mathrm{U}(\mathrm{I}) \mathrm{B}$ - breaking Higgs VEV is too small to give them big enough masses, so they get the bulk of their masses from the

$$
B_{2}-B_{1}=3
$$ SM Higgs.

$$
\begin{aligned}
\mathcal{L}_{Y}= & -y_{1} \bar{\Psi}_{L} h_{\mathrm{SM}} \eta_{R}-y_{2} \bar{\Psi}_{L} \widetilde{h}_{\mathrm{SM}} \chi_{R}-y_{3} \bar{\Psi}_{R} h_{\mathrm{SM}} \eta_{L}-y_{4} \bar{\Psi}_{R} \widetilde{h}_{\mathrm{SM}} \chi_{L} \\
& -\lambda_{\Psi} S_{B} \bar{\Psi}_{L} \Psi_{R}-\lambda_{\eta} S_{B} \bar{\eta}_{R} \eta_{L}-\lambda_{\chi} S_{B} \bar{\chi}_{R} \chi_{L}+\text { h.c. }
\end{aligned}
$$

- Contributions to precision electroweak S and T parameters are acceptable for $\Delta M \sim 50 \mathrm{GeV}$.
- LHC bounds require M > about 500 GeV .

These new fermions look something like charginos and neutralinos in the MSSM.

UV Model: U(I) B-L

- An intrinsically anomaly free option is $\mathrm{U}(\mathrm{I})_{\mathrm{B}-\mathrm{L}}$.
- This still results in equal couplings to proton and neutron, so again we neutralize the proton by $\mathrm{O}(10 \%)$ tuning of the kinetic mixing parameter to $\varepsilon=-g_{B-L}$.
- Now the electron couplings are naturally smaller than the quark couplings, as desired.
- The price to pay is that the neutrino couplings are not only non-zero, but roughly the size of the neutron coupling; too big!
- There are ways to fix that...

Outlook

- Light new physics is an important ingredient in physics beyond the SM.
- I discussed some of the issues related to MeV - GeV theories containing vector particles, and used the ATOMKI anomaly as an example to show how model-building can work.
- There are still a lot of issues I didn't have time to cover:
- More systematic exploration of UV theories
- Connection to Dark Matter
- Phenomenology of light dark Higgses.
- Nature may still contain secrets for us to discover below the GeV scale...

Bonus Slides

Beryllium-8

Be-8 As a New Physics Lab

- Beryllium-8 is composed of four protons and four neutrons.
- Its ground state decays into two alpha particles.
- It is a somewhat unusual nucleus:
- It has large excitations ($\sim 20 \mathrm{MeV}$) with reasonably long lifetimes.
- Relatively easy to make in the lab from $\mathrm{P}+{ }^{7} \mathrm{Li}$.
- Transitions from excited to ground states probe MeV-scale weakly coupled physics, such as an axion.

Excited state

Resonant
Production

Discrete
Transitions

Ground state

Be-8 Levels

JP T E[MeV] 「[KeV]

$J^{\text {P }}$

- There are a variety of excited states with different spins and isospins.
- For today, interested in the I+ $17.64 \mathrm{Be}^{* \prime}$ and $18.15 \mathrm{Be}^{*}$ states. There is some evidence that these states are actually admixtures of isotriplet and isosinglet.

Be* Decays

- Be* decays are dominantly a hadronic transition into ${ }^{7} \mathrm{Li}+\mathrm{p}$.
- There are also rare MI electromagnetic transitions into a gamma ray and the ${ }^{8} \mathrm{Be}$ ground state.
- Even rarer still is through an off-shell photon (still MI), leading to a final state of e+e- plus the ${ }^{8}$ Be ground state.
- This process is often referred to as "internal pair creation" (IPC).

Internal Pair Creation

- Internal pair creation is observed for a variety of nuclear transitions.
- It is generally well-described analogously to atomic transitions.
- They can be classified as E or M and the angular momentum $\mathrm{I}=0, \mathrm{I}, 2, \ldots$
- The photon propagator leads to an invariant mass of the e+ewhich falls with rising $m_{\text {ee. }}$.
- All of these transitions are monotonically falling and expected to be pretty smooth.

The ATOMKI Experiment

ATOMKI Experiment

- The ATOMKI experiment produces a beam of protons with well-calibrated energy which strike a thin lithium foil, producing excited states of ${ }^{8} \mathrm{Be}$. Particular excited states can be selected by adjusting the energy of the protons in the beam.
- Detectors measure the e+e- opening angle and their energies.

ATOMKI Experiment

Observation of Anomalous Internal

 Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson A.J. Krasznahorkay, et al. PRL II6, 04250 I (2016) arXiv:I504.0I527A pair spectrometer for measuring multipolarities of energetic nuclear transitions
J. Gulyás, et al. NIM-A 808, 21 (2016); arXiv:nucl-ex/03 I I002

Energy Scan

The ATOMKI experiment observes a bump-like structure in opening angles around 140 degrees when they scan through the Be^{*} resonance.

Off-resonance runs, both above and below the Be* state seem to match the naive expectations of an MI IPC transition.

- In particular, the 17.64 MeV Be*' state does not see the same enhancement.

The (local) statistical significance of the bump structure is $\sim 6.8 \mathrm{\sigma}$ above background.

(Curves are artificially scaled for readability)

Event Selection

- A resonant structure in the opening angle is suggestive of a peak in the e+e- invariant mass.
- Maybe Be^{*} can decay into a new state of some kind (which itself decays into e+e-) and the ground state?
- Given the intriguing result, the ATOMKI analysis examines some of the characteristics of the resonance-like signal, based on measurements of the e+ and e- energies.
- The invariant mass of the e+e- defines the

The Be^{*} is produced with v ~ 0.02 , very close to at rest. mass of the hypothetical new state. It should be produced with a definite boost, and so the opening angle should correlate with that mass appropriately.

$$
m_{e e}^{2}=2 E_{e^{+}} E_{e^{-}}-2 \sqrt{E_{e^{+}}^{2}-m_{e}^{2}} \sqrt{E_{e^{-}}^{2}-m_{e}^{2}} \cos \theta+2 m_{e}^{2}
$$

- The opening angle observable is correlated, but distinct from the invariant mass.

Event Selection 2

- They also define the "symetric-ness" of the $e^{+} e-$ pair, y.

$$
y \equiv \frac{E_{e^{+}}-E_{e^{-}}}{E_{e^{+}}+E_{e^{-}}}
$$

- A two body decay of Be* into the ground state and a new particle should have roughly equal energies for the e^{+}and the e -.

$$
=\left(1-y^{2}\right) E^{2} \sin ^{2} \frac{\theta}{2}+2 m_{e}^{2}\left(1+\frac{1+y^{2}}{1-y^{2}} \cos \theta\right)+\mathcal{O}\left(m_{e}^{4}\right)
$$

"'Symmetric": $\quad y<0.5$
"Asymmetric": y > 0.5

$$
E \equiv E_{e^{+}}+E_{e^{-}}>18 \mathrm{MeV}
$$ e+ and e- energies.

Event Selection 2

Fixed $E_{p}=1.10 \mathrm{MeV}$

- Note that in the bump region $\sim 14-18 \mathrm{MeV}$, the signal is a pretty large fraction of the total number of events (though it is a small fraction of the total integrated over all m_{ee}).

Detector Resolution

- ATOMKI detector geometry does have some impact on the acceptance in terms of the opening angle between the e+ and e-.
- However, based on simulations (blue histogram), and confirmed by calibration data (red dots), they do not expect a sharp feature at ~ 140 degrees.
- There is some structure in the response, but at a much smaller level, more like $\sim 20 \%$. It is hard to see how this should produce
 an artificial signal as large as the background itself.

Detector Resolution

- Both at similar (for an IIB target) and lower (for the 7 Li target) proton energies, the reconstructed angular distribution agrees well with the expectations from simulation of either an EI or an MI transition.
- They also consider a variety of other targets, including O , Si , etc, and find no hint of a signal from any of them.

Detector Resolution 2

- ATOMKI simulated the expected reconstructed peak shapes for a narrow particle decaying into e+e-.
- They consider both a low mass (6 MeV) and high mass (18 MeV) example.
- At high masses, there is a fairly long tail down to lower energies.
- But note that their cut on E essentially removes sensitivity to those energies anyway.
- The response on the high end
 is pretty narrow, with a $\sim \mathrm{MeV}$ energy resolution.

Sanity Checks

- The excess is a bump on top of what is expected to be a smooth monotonically decreasing background.
- It's not on the edge of sensitivity, and thus not a "last bin" effect.
- The opening angle and invariant mass are consistent with a two body decay from Be^{*} to a state with rest energy around 16.5 MeV and the ground state.
- The e+ and e- have symmetric energies, consistent with a sequence of twobody decays:
- $\mathrm{Be}^{*} \longrightarrow \mathrm{X}(16.5 \mathrm{MeV})+\mathrm{Be}$ (ground state)
- $X \rightarrow$ e+ e-
- The bump disappears for off-shell proton energies, perhaps arguing against some kind of nuclear interference effect.
- There are a handful of known nuclear transitions at such large energies, and none we have found have been very well-studied in IPC transitions.

So What's Going On?

- Obviously, one should be cautious. In the very least we would like to see these results repeated, preferably by a different group.
- Logically, we should consider the possibilities of:
- Experimental error/miscalibration/etc:
- Nothing is obviously wrong with the experiment: the angles and energies seem self-consistent and pass the sanity checks;

So What's Going On?

- Up until now unknown nuclear physics effect:
- Nuclear physicists so far haven't come up with an obvious explanation for a bump (but they continue to work on it!)

This is crucial;

Zhang, Miller 1703.04588

They examine interference, considering both production and de-excitation.

Conclude that a FF would have to be unreasonably large to play a role.

Conclude interference can be important to interpret a signal, but doesn't explain the observations...

- It would be very helpful to see it in a different nuclear system (maybe ${ }^{4} \mathrm{He}$?).
- My attitude here: Let's see what kind of new physics can explain it and see what other constraints/opportunities there are to learn more.

