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Strategy for my seminars
•Simplest pathways to understanding the principles of 
resonant cavity axion detectors. However, I have tried 
not to over-simplify and gloss over things that really are 
complex.

•Experimental focus (but I’m not shy about considering 
the theory where necessary).

•Classical rather than quantum models (but by all means 
introduce quantum mechanics where it matters).

•Use of analogies and simplified pictures.

•Aim is to give a clear picture of the pathway from axion 
phenomenology to an understanding of the detectors in 
practice.
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The Axion in QCD Phenomenology

It is established by experiments that quantum chromodynamics conserves 
the discrete symmetry known as CP (charge conjugation and parity flip). 
Since CP is violated in the electroweak sector (K-mesons, for example), this 
is not expected, and, prior to Peccei and Quinn’s work, was unexplained 
except by positing a zero mass quark.

Robert Peccei and Helen Quinn proposed that QCD possessed a global U(1) 
symmetry broken at some high energy scale fPQ. Once broken, the symmetry

led to a CP conserving ground state for QCD.

Frank Wilczek and Steve Weinberg both pointed out that oscillations about 
this ground state implied the existence of a new pseudoscalar particle, which 
Wilczek named the axion (after a washing powder he used - Weinberg wanted 
to name it the higglet). 

The Strong CP Problem

The Peccei Quinn Mechanism

The Axion



QCD and CP Violation
Particle phenomenology is carried out by writing down all the Lagrangian

terms in the fields of your theory consistent with the symmetries you think 

the theory should possess. For example, a Lorentz invariant QCD Lagrangian

contains the following terms for the energy densities of the gluon field strength 
tensors:

How to construct a particle theory

If you want a particle theory containing these fields that violates the CP 

symmetry, there is a second way of constructing a Lagrangian term out of 

the quark fields:
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where      is, for now, a numerical coefficient expressing the extent of CP 
violation. The physical phenomena thought to contribute to CP violation

include vacuum tunnelling (instanton) effects and a non-zero phase in the 

determinant of the quark mass matrix. But, in general, why should QCD 
conserve CP, when QED does not? This term shouldn’t just disappear.

⇥



The Pool Snooker table analogy to axion physics
(Pierre Sikivie, arXiv:hep-ph/9506229) 

Consider a snooker ball on a flat table.

If you only consider physics on the table, there is translational
symmetry - every horizontal position is the same as every other.



The snooker ball sees the wider world
A snooker table is an artificially flat landscape, with a symmetry imposed 
by special conditions. When you are not on the table, there is no 
symmetry with respect to translation. The analogy here is to particle 
physics once CP violation was found in the electroweak sector. Seeing
the wider CP-violating world leads us to ask why CP is conserved in 
QCD.

Fine tuning arguments are sometimes argued for - particularly by people who 
like anthropic arguments ‘if it wasn’t that way, we wouldn’t be here to write 
this paper’…or something like that. If you don’t like anthropic arguments, and 
I don’t, then you need a mechanism, a reason, for the observed symmetry.

Solution by fine-tuning
the legs are just the
right lengths to make it so.



A Pool Table Levelling Mechanism

COUNTER	
WEIGHT

HINGE

Here is a mechanism that forces the pool table to be flat. It only works in the absence of
violent earthquakes that place the table and its contents in a state of violent excitement.
A long time after the earthquake, oscillations in the mechanism are damped away, and
you are left with a flat table and a restored translational symmetry.

The above language points to an analogy - a mechanism like this, and also the Peccei 
Quinn mechanism, can be made to work at low energies, but not at high energies. The 
early Universe was in a state of violent excitement, but expansion and redshift led to the 
lowering of energies of its constituents, and at some energy scale          the Peccei 
Quinn mechanism works to impose the CP symmetry on quantum chromodynamics.

fPQ



Symmetry restoration at low energies
Suppose the snooker table started out at a arbitrary angle and the mechanism was 
activated to restore its flatness. There would be residual oscillations of the 
counterweight. As a result the table’s orientation has small oscillations. These small 
oscillations have consequences for dynamics on the table. Analogously, residual 
oscillations about the low energy QCD vacuum correspond to residual axion field 
energy in our Universe. Quantum mechanics leads us to think of this residual field as 
pseudo scalar massive field quanta - a gas of massive (though very light) particles.

Original	arbitrary	
angle	of	
snooker	table

CP	is	not	a	
symmetry	
of	nature	at	high	
energies/early	times.

Levelling	
mechanism

Peccei	Quinn	
(PQ)	mechanism	forces	
CP	conservation	at	low	
energies	/	late	times.

Residual	Table	
Oscillations

Axions	!

Analogies



Peccei and Quinn’s mechanism
In Peccei and Quinn’s solution to the strong CP problem,

QCD possesses an additional global chiral U(1) symmetry.

At low energies, this symmetry is spontaneously broken, in

such a way as to introduce a new CP violating term in the

QCD Lagrangian. The vacuum expectation value of this field

exactly cancels the sum of all the other CP violating terms.


In fact, it is then possible to replace all the CP violating 

terms with a single term proportional to an axion field

having a zero vacuum expectation value at low energies.


Of course this is new physics. It implies deep connections 

between nominally disparate sectors of QCD.
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Axion interaction with photons
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The axion field now yields other axial terms involving interactions with other

sectors of the standard model. Because the axion is a pseudoscalar, it has

the same perturbative interactions as another more familiar massive

pseudoscalar, the     . In particular, an anomaly coupling to two photons:⇡0

This interaction term combines with the ordinary energy density term

leading to modified Maxwells equations including the axion field. The modified
behaviour of electromagnetic fields can be used to detect axions.
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This is the coupling used to detect axions in Sikivie-type resonant axion 
detectors. The interaction Lagrangian is here written in SI units where the
dimensions of the action are                                  .[S] = [~] = ML2T�1
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Maxwells equations with axions
Maxwell’s equation for               yields the effect of the axion field on the

electromagnetic field in the cavity [2]
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[1] M. E. Tobar, B. T. McAllister, M. Goryachev, Modified axion electrodynamics as 
impressed electromagnetic sources through oscillating background polarisation and  
magnetisation. Physics of the Dark Universe 26 (2019) 100339, arXiv:1809.01654 

[2] L. D. Duffy and K. van Bibber, Axions as dark matter particles, New Journal of Physics,

11 (2009) 105008. References therein to the original KSVZ and DFSZ papers.

The coupling           is model dependent. The two canonical axion models

are the more heavily coupled KSVZ axion, and the more slightly coupled 

DFSZ axion.          can be written as [3] 
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Here          is the energy scale below which the PQ symmetry is broken. E and 
N are the electromagnetic and colour anomalies in the phenomenology under 
consideration, and z is the ratio of the up and down quark masses. For the 
KSVZ model                     and for DFSZ,                  . g� = 0.36g� = �0.97
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Coupling to a resonant cavity in a static magnetic field
Taking the term containing the time derivative of           from the modified

Maxwell equation, we obtain the source term exploited by resonant cavity 

axion detectors.
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If a region is threaded by a static uniform magnetic field, and that region

also contains an oscillating axion field, then a source term for oscillating

electromagnetic fields at the same frequency is formed by the product of the

magnetic field, the axion field, and the frequency of that axion field. Other

source terms in the Maxwells equation can be neglected for this geometry.

It is possible to deduce the power converted into electromagnetic waves

by integrating the solutions of the modified Maxwell equation over the 

volume of the detector and, in the case of a resonant cavity, incorporating

the effects of the buildup of energy in the resonances. However, there is

a short-cut to the correct answer for the signal power which shall take

instead, later in this seminar.



Axions as dark matter
The picture of axions as residual oscillations in the axion field after spontaneous

breaking of the PQ symmetry makes axions a good cold dark matter candidate.

fPQ

It is thought that the matter budget of the Universe is dominated by unknown 
cold or warm dark matter (warm dark matter could be sterile neutrinos, for 
example). Another possibility is modified Newtonian dynamics in the limit of 
small accelerations. This idea is less popular after the bullet cluster observation.


Axions produced at the energy scale          will, as we shall see, have very

faint couplings to baryonic matter; hence having been produced they do not 

reach thermal equilibrium with the other contents of the Universe, neither do they

decay in the lifetime of our Universe. They have the required properties to form 
the structure that we see today, and could even dominate a cold dark matter 
halo.



Properties of axion dark matter
The properties of the axion relevant to dark matter searches are all

related to the symmetry breaking scale. We’ve already seen that the 

coupling to two photons scales as 1/fPQ
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The axion mass and its abundance in the Universe today can also

be shown to scale with this same parameter. 

ma = 6µeV

✓
1012 GeV

fPQ

◆

Therefore axions produced at higher energies, or earlier times, are 

lighter and more faintly coupled. This led to the name ‘invisible axions’

for axions so light that they might never be detected as their couplings

vanish. On the other hand, the abundance of axions in the Universe also

scales with         [2].fPQ
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Axions that are too light may over-close the Universe, or, it can be 

argued, are produced during inflation where we don’t understand physics.



Properties of axion dark matter - 2
Other axion properties are identical to those of WIMPs, since they derive

from the observationally deduced properties of our halo. Though these 

assumptions are ‘vanilla’ ones, I will follow my colleagues in using them as

a straw man model for the dark matter halo. Probably things are more complex 
in practice.

Local rest energy density of the dark matter halo in a spherically symmetric 
(flattened) model:

⇢H = 0.3 (0.45)GeV cm�3

RMS velocity of halo dark matter, equal to the virial velocity in the local 

galactic gravitational potential

v0 =
p

v2 ' 230 km s�1



$6M question: The axion mass
Particle theory doesn’t give us much clue, but a combination of cosmological

and astrophysical constraints lead to some hints and for where to look.
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Very light axions forbidden:
else too much dark matter

Heavy axions forbidden:
else new pion-like particle

⇐ Dark matter range:�axion 
window�

very hard to detect
�invisible axions�

Axions either over-close the 
Universe or their abundance is
sub-overclosure but affected by 
new early-Universe physics.

Rather like the WIMP miracle, there’s the `Axion Coincidence’. It turns out that

masses around a micro-eV are close to what is needed for the dark matter

halo we think we have, and are not ruled out by existing observational limits.



Back to the snooker table analogy
The earthquake (big bang) was long ago, and the large
oscillations of the levelling mechanism have damped out
(due to expansion and red shift). There remain residual 
oscillations of the table surface at low amplitude. One
approach to detection of these residual oscillations is to
use a resonant detector - for example a mass on a spring.

The amplitude of the mass’ motion is larger than the 
displacement of the mass when the table is maintained at
maximum slope by a factor of

mk/2 k/2

2⇡ftable =

r
k

m

Q =

p
mk

⌘
where     is the coefficient of Stokes (velocity) damping of
the mass/spring mechanism.

This is the underlying principle of resonant detection. A high quality oscillator driven at
resonance will have an amplitude larger than the drive amplitude by a factor of Q. The
catch is, you have to know the resonant frequency.

⌘

The mass on the spring resonates with the frequency of
the residual table oscillations when



Resonant axion detectors - cartoon edition

~Ea = g ~B
@a
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The resonant detector is a mode of oscillation of a cylindrical copper plated metal
box. The box is threaded by a static magnetic field. It contains moveable tuning rods,
also copper coated, that may be moved to adjust the mode frequencies. When the
frequency of the mode of interest is related to the axion mass by                     , power
is deposited into the cavity mode. The cavity is read out by a radio receiver, for 
reasons that will be given presently.

h⌫ ' mac
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More properties of axions, after some assumptions
To learn more about axions, we will make some assumptions. Assume that 
the axion mass is around that which would provide a good fraction of closure
density. We’ll choose                           . What are these axions like?mac

2 = 4µeV

De Broglie wavelength
�DeB =

h

p
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2⇡~c
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The velocity is the local halo virial velocity of 230 km/s.                       
Using                                   we get~c = 0.2GeV fm

�DeB =
6.28⇥ 0.2⇥ 109[eV fm]

4⇥ 10�6eV ⇥ 230 [km s�1]
3.0⇥105 [km s�1]

' 400m

By contrast, the De Broglie wavelength of a WIMP is around 1 fm. What
about the number density? If a single axion has a rest energy of
The local halo density is around 0.4 GeV/cc, implying that each cubic
centimetre of space would contain around 1014 axions. At this huge number
density and with such a long De Broglie wavelength, it is clear that axion 
dark matter would have the characteristics of a massive pseudo-scalar field
more than those of individual particles.

4µeV



Properties of photons from axion conversion
Frequency

Bandwidth
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h
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6.6⇥ 10�34 [Js]
= 970MHz

This is in the UHF band - roughly the same frequency band that is
populated by mobile phone signals. 1GHz corresponds to a 30cm
wavelength, so the resonant cavities that will respond to such photons
will be of order 30cm diameter. 

Bandwidth is given by the ratio of the kinetic energy of axions to their
rest energy, multiplied by the frequency. Here we have
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This is quite a narrow line width. Our resonant cavity will be normal-
conducting as it must be in a high magnetic field. Normal conducting
cavities typically have               , corresponding to a line width of 9.7kHz.
The axion signal will cover only a small fraction of the resonance width.

�⌫a = 290Hz

Q ⇠ 105



Equivalent circuit model of a resonant mode
To derive the signal power in a cavity mode from the fundamental
axion-photon interaction, we take a short cut and model the mode
as a series RLC circuit, shown below. The circuit is driven by a voltage
source, which represents the axion signal driving the fields of the 
resonance.
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The Lagrangian for the circuit in terms of the
charge q on the capacitor plates, is
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where the last term is the driving term from the axion
source. To form the Euler-Lagrange equation, we add
a dissipative term for the resistor,
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Lagrangian term for axion to photon conversion
The actual drive derives from the lagrange density for the interaction term
between the axion field and the electric and magnetic fields.

La�� = ga��a✏0 ~E · ~B
We convert this Lagrangian density term into a drive term with energy units
by multiplying by c and integrating over volume - here the volume of the cavity.

La�� = ga��ac✏0
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In a cavity detector, the integrand is interpreted as the dot product of the 
electric field of the cavity mode induced by the axion field with the static
magnetic field threading the cavity. To simplify the argument (in practice this
simplification is usually within about 20% of reality), we assume that the 
magnetic field is uniform, of magnitude       and parallel to the     axis.B0 z
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Cavity form factor
We define a form factor for the cavity mode as follows:

fnlm =

⇣R
V

~E · ẑ dV
⌘2

V
R
V E2 dV

The indices [nlm] are there because resonant modes of cavities with 
cylindrical symmetry are classified using a mode type (TM, TE, or TEM)
and a set of indices corresponding to the solutions of the partial differential
equations into which the wave equation separates [4].

[4] J.D. Jackson, Classical Electrodynamics, section 8.7

It turns out that only the very lowest order TM modes, and in particular the
TM010 mode, have appreciable values of the form factor. The stored energy
in the cavity mode is now equated with the stored energy in the capacitor
of the equivalent circuit:
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Typical TM010 mode form factor in practice
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Figure 3.7  Form factor f010 as a function of frequency calculated 
numerically as a function of the cavity resonant frequency with 

the rods moved as described in Section 3.3.4 
 

There are two modifications made to the plot of form factor vs. frequency with the cavity 
empty to arrive at the form factor curve with the cavity filled with liquid helium. Firstly, 
the definition of the form factor from Equation 2.16 contains a factor of εr in the 
denominator. Hence the form factor is reduced by a factor of 5.5% over the value for an 
empty cavity at all frequencies. Secondly, with the tuning rods in a fixed position, filling 
the cavity with helium shifts the mode frequencies down by 2.7%. If the cavity resonant 
frequency is f0 before filling with helium, a tuning rod position must be adjusted after 
filling to re-tune the resonant frequency back to f0. Combining these two effects, the form 
factor at frequency f0 after filling with liquid helium is equal to the form factor at 
frequency (1+0.027)f0 before filling, divided by 1.055.  
 
3.4 The 1st-Stage Cryogenic Amplifier 
 
Section 3.4 contains detailed descriptions of measurements on the 1st stage cryogenic 
amplifier that are critical to my analysis. This section may be skipped if the reader is not 
concerned with details of the noise characteristics of the cryogenic amplifier. However, it 

This form factor was calculated for a 50cm diameter cavity, 1 metre tall,
containing a single tuning rod mounted parallel to the cavity axis. The 
tuning rod had approximately 8 cm diameter, and was mounted on a cam
so that its displacement from the cavity symmetry axis could be varied, 
which changes the TM010 mode frequency. The form factor was calculated
for a cavity filled with helium vapour, and for a cavity filled with liquid - 
filling with liquid moves the mode frequencies by about 3%, allowing 
the experiment to steer around mode crossings.



Relationship between axion field and equivalent drive voltage
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Substituting for the integral in the Lagrangian we obtain an equivalence
between the voltage drive and the parameters of the driven cavity mode.
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It remains to remove the remaining R and C from the equivalent circuit
model of the cavity. However, RC can be re-expressed in terms of the
measurable parameters of the resonance       and     .!0 Q
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How big is the axion field amplitude in the local halo?
A dimensional argument gets us started here. The dimensions of the axion
field, deduced (again) starting from the dimensions the lagrange density
and using either the mass or the kinetic energy terms, are 

[a] = kg
1
2 s�

1
2

Dimensional consistency between the axion field and the density of the halo
in SI units lead us to conclude that
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We now exploit the fact that the product             is dimensionless. So, we
form the square, also dimensionless,
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We now substitute this expression and that for RC in terms of cavity
resonance parameters into the axion conversion power formula
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Mixed units

This entire equation is in SI units. The nice thing about that is that the power
comes out in watts! The not-so-nice side is that the halo density and the 
coupling constant are in SI units too, which is painful.

However, we can play a trick, because the term in parentheses is dimension-
less. Therefore, we can set                      in the brackets only, obtaining the 
wierd, but very convenient mixed units equation for the power 

~ = c = 1

where it is understood that the halo density, coupling constant and axion 
mass are in calculated in natural units, all other terms are in SI units.
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How much power from halo axions?
As is customary, this formula is then written in terms of typical values
for the quantities in question. The one tricky conversion is the halo density, which
must be written in units eV4 using the conversion that 1 cm3 is 1.31⇥ 1014 eV�3

Notice the prefactor! The power levels we expect are order of 
a thousandth of an attowatt!

Pesky factors of 2
Annoyingly it gets worse. A theorem about impedance matching is that the 
best you can hope to extract from a source using an amplifier is half the 
energy, so we lose half this power to the walls of the cavity. Also, the loading 
effect of the antenna that couples the signal out degrades the cavity Q by a 
factor of 2; no this isn’t the same factor of 2 - it’s another one, so you only get 
1/4 of the power in to your amplifier. Rats.
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Summary of Seminar 1

1. We introduced axions as a by-product of Peccei and Quinn’s theoretical 
mechanism to explain CP conservation in quantum chromodynamics 

2. We figured out how the axion terms in the Lagrangian for QCD cause 
modifications to Maxwell’s equations that can be used to cause axions to 
convert into electromagnetic field oscillations. 

3. Resonant cavity detectors enhance the size of these signals by a factor of 
the cavity resonance quality factor. 

4. We then derived the power from axion to photon conversion in a cavity, 
discovering why we need resonant enhancement of the signal - even with the 
cavity Q, the signal is of order 1/1000 of an atoWatt. 

5. This assumes the whole halo is axions, and that the local halo density 
reflects that in a slightly flattened (2:3 aspect ratio) halo with no clumping or 
voids. Probably the wrong institute to state these assumptions….oh well… 

6. This only matters if there is a noise source that spoils the party. And there is! 
It’s thermal noise in the walls of the cavity, and more thermal noise from the 
electronics used to amplify the signal. More about that in the next seminar.



Sikivie-style resonant 
axion haloscopes - 2
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ADMX detector rendering 
Cavity (gold) is 1m high, 50cm in diameter. 
Superconducting magnet coils surrounding the cavity 
are immersed in liquid helium



Noise background
An advantage of resonant cavity axion detectors is that the active volume is
surrounded in many layers of conductive metal shielding. This provides natural 
shielding against many sources of outside noise. Also note the signals are 
persistent, so there are no backgrounds from radioactive decays, and no need 
for an underground lab.

The electromagnetic shielding does not protect from Johnson noise produced 
inside the apparatus. The cavity walls, and the amplifier electronics, are at a 
non-zero temperature. They contain charged particles in random thermal 
motion, hence they are emitting electromagnetic waves, also random. In turn, 
these waves exert forces on the charges, so that the radiation reaches 
thermodynamic equilibrium with the charges, at a characteristic temperature T.

T is either the physical temperature of the walls of the cavity, or 
it is the noise temperature of the electronics, or, in reality, both added together. 

We will now work out the power emitted by a body at temperature T emitting
Johnson noise using a simple classical derivation. This treatment follows that
of many textbooks on thermal physics [5]



Johnson noise in a matched line

Z0

Z0 Z0

Coaxial cable, characteristic impedance

L

Consider a coaxial transmission line of characteristic impedance       terminated
at each end by matched impedances. Any radiation that is incident down the 
cable on the terminations will be absorbed without reflection. Similarly, any 
radiation emitted by the resistors will travel into the cable without reflection. If the 
resistors and the cable are all at temperature T, then the radiation must be in 
thermodynamic equilibrium; the radiation flux out of the cable into the resistors 
must equal the radiation flux out of the resistors and into the cable.

However, we know how to calculate the radiation flux out of the cable. It’s just
the radiation density in the cable times the velocity of the radiation. So, let’s
do that calculation. The electromagnetic modes of oscillation of the cable have 
wavelengths

Z0

�n =
2L

n
where     is a positive integer.n



How many cable modes?
�n =
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n
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⇡

L

The frequency interval and the wavelength interval occupied by a mode
are related using ! = ck 2⇡⌫ = ck

�⌫

⌫
=

�k

k
=

⇡

kL
=

⇡�

2⇡L
=

�

2L

so that �⌫ =
⌫�

2L
=

c

2L
This is the frequency interval
occupied by a single cable mode.

Now consider a frequency bandwidth      in the cable. This bandwidth
contains                                     modes.

n =
B

�⌫
=

2LB

c

B



Equipartition of energy
Each mode of the cable obeys a harmonic oscillator equation, and so
possesses 2 degrees of freedom. By classical equipartition, at temperature
T the average energy per oscillator mode is kBT. So the average energy
in the modes in a bandwidth B of cable is

The average energy density (energy per unit length) in the cable in this
same bandwidth is

Ē =
2LB

c
kBT =

2LkBTB

c

ū =
Ē

L
=

2kBTB

c
The energy flux, or just the power emitted by the cable is just the energy
density times c, but note that it gets shared between the two terminating
resistors. Hence the power emitted by the cable towards each resistor in
a bandwidth B is

P̄ =
ūc

2
= kBTB

Since the resistors and the cable are in thermodynamic equilibrium, that
same power must be emitted by the resistors. This is the desired result.
Note this is an average power; from moment to moment the power emitted
will fluctuate. We will discuss these fluctuations presently.



Thermal noise in resonant cavities
A cavity cooled to 150mK searches for           axions. What is the noise 
level in the signal bandwidth? 

The bandwidth of this signal was 290Hz. At resonance, the effective 
impedance of the cavity mode matches the characteristic impedance of
an antenna critically coupled (see later) to the mode. So, the thermal
noise emitted by the cavity is

4µeV

P̄ = kBTB = 1.4⇥ 10
�23

JK
�1 ⇥ 0.15K⇥ 290Hz = 6⇥ 10

�22 W

The signal power to compare this with is about                          times a cavity 
form factor of order 0.5, times 0.5 because half the power is dissipated
in the cavity walls, so the signal level is about PS ⇠ 4⇥ 10�22 W

1.5⇥ 10�21 W

The ratio of the signal power to the raw noise power is of order 1 even for
noise from the cavity walls only and axion signal levels at the more optimistic
levels predicted by the KSVZ axion model. It is worse in practice; we want 
also to look for more faintly coupled DFSZ axions, and we have a potential
additional noise source in the noise temperature of the electronics.



Effects on the design of axion halo scopes
• The signal power is inherently weak. Make it as strong as 
possible using a large magnetic field and volume. Figure of 
merit for detectors is B2V.

• V of a single cavity is dictated by the wavelength of the 
target photons. For large volumes at high frequencies, you 
will end up power-combining multiple cavities. This is 
technically difficult, and each cavity must be tuned in sync.

• Physical temperature of cavity as low as is justified by the 
noise temperature of the electronics.

• Considerable progress has been made on electronics noise 
temperatures. 20 years ago, 2K - currently 150mK - but 
devices at and below the standard quantum limit around 
10mK noise temperatures are now a possibility. More about 
electronics later.



Axion Dark Matter eXperiment - 1
• A resonant search for halo axions - first science data in 1995
• 8 T superconducting 

NbTi winding magnet
• Early amplifiers were 

HFETS - first model 
4K noise temperature; 
later models 2K. Made 
by the US NRAO lab 
in Richard Bradleys 
group. 

• Early electronics was 
a double heterodyne 
receiver with IF and 
AF frequencies of 
10.7MHz and 50kHz.

• Cryogenics was 
pumped liquid helium, 
2K cavity temperature Darren Kinion - built the DAQ system

used in the early LLNL phase.

Typical run cadence when data taking starts!

2!

-  Inject broad swept RF signal to record cavity 
response. Record state data (temperature 
sensors, hall sensors, pressure, etc.).!

-  Integrate for ~ 80 seconds (final integration time 
based on results from cold commissioning).!

-  Move tuning rod to shift TM010 & TM020 modes 
( ~ 1 kHz at a time).!

-  Every few days adjust critical coupling of TM010 
& TM020 antennas.!

!
-  Anticipated scan rate ~100 MHz (0.5 μeV) every 

3 months!

STEPPER MOTOR
TOWER

THERMAL BAFFLES

HELIUM RESERVOIR

MAGNET (4m HIGH
IN FLOOR PIT)

CAVITY HOUSING

1990s configuration - Lawrence Livermore National Laboratory, U.S.A.



Crash course in microwave electronics
Gains in dB

G[dB] = 10 log10

✓
POUT

PIN

◆

Powers in dBm

P[dBm] = 10 log10

✓
P [W]

10�3 W

◆

Useful rules of thumb: 
• 3dB is a factor of 2 in power.

• -3dB is a factor of 1/2 in power.

• 10dB is a factor of 10 in power.

• 0dBm is a power of 1mW.

• output power (dBm) is input 

power (dBm) + gain (dB). 
Negative gains mean 
attenuation (signal gets smaller).

Key components.
1. Amplifiers.
2. Attenuators.
3. Mixers - multiply a signal by a sine wave 

at a different frequency. A way of moving 
a signal from a higher frequency to a 
lower one.

4. Network analyser. Sends a swept sine 
wave towards one port of a component, 
and at each frequency measures the 
frequency response at one or more 
device ports.

5. Spectrum analyser. Measures power vs. 
frequency in a signal.

6. Directional coupler. A 3 port device - the 
third port injects a signal onto the line 
between ports 1 and 2, such that the 
signal is only travelling in one direction.

7. Circulator. A 3-port device. Inject a signal 
into port 1 and it comes out through port 
2, but not port 3, and cyclic permutations. 
Useful for matching. Usually contains 
ferrites.

• Between 500MHz and 20GHz, we can

usually use high quality coaxial cable

to move these signals.

• In a vacuum 1GHz = 30cm wavelength. 



Early ADMX Electronics - HEMT amplifiers
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Figure 3.1  Schematic of the apparatus 

 



 53 

spectra at the receiver output. I will refer to this linear average of many power spectra 
with a noise source at the receiver input as the crystal filter passband response. Accurate 
measurement of the crystal filter passband response is important since it multiplies the 
final power spectra that form our raw data. Application of the crystal filter passband 
response to data analysis is discussed in Chapter 4. 
 
The apparatus used to measure the crystal filter passband response is shown in Figure 
3.19.  
 

First Local 
Oscillator

Image
Reject
Mixer

Crystal
Bandpass

Filter

IF-AF
Mixer

Second Local 
Oscillator

1st
IF

Amp
.

2nd
IF

Amp.

Programmable
Attenuator

Noise
Source

35dB
Low
Noise
Amp.

Axion Receiver Electronics

First 
Signal

Sampler

50Ω

Second 
Signal

Sampler

50Ω

FFT
Spectrum
Analyzer

 
 

Figure 3.19.  Apparatus for the measurement of the crystal filter passband response 
 
Thermal noise generated using a Noise/Com 346B broadband 104K noise source is 
amplified by 35dB injected at the input of the MITEQ IRM045-070-10.7 image reject 
mixer. The mixer output is connected the IF section of the axion receiver electronics. An 
SRS 760 FFT spectrum analyzer is used to measure 106 400-bin power spectra is taken 
covering a 50kHz bandwidth about 10.7MHz, the center frequency of the filter passband 
The total integration time is 2.2 hours. Figure 3.20 is a measurement of the crystal filter 
ripple. 
 

Double heterodyne receiver. 
Cavity resonance only about 
10kHz wide, so a final data 
sampling rate of 200kHz is 
ample. Cavity search 
between 700 and 800 MHz, 
for a mass range between 
2.9 and 3.3 micro-eV. 
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Figure 3.17  An image reject mixer 
 

Notice that when the image component is mixed down to the IF frequency the sign of the 
phase shift introduced by the 1st hybrid is flipped. After the mix down to IF, the two 
branches are re-combined in a second hybrid. At the output, the two contributions to the 
IF signal originating from the RF frequency traveling through the upper and lower signal 
path between the two hybrids have both received an overall phase change of π/4 with the 
same sign. Hence they combine constructively. But the phase changes for the same two 
components originating from the image frequency are opposite in sign, hence there is an 
overall π/2 phase difference and the contribution from the image frequency vanishes at 
the output. At the lower output arm of the right hand hybrid the opposite is true and the 
image frequency signals combine constructively whilst the cavity frequency signals are 
rejected. Hence this port is terminated. 
 
The image reject mixer employed in our first run was a MITEQ IRM045-070-10.7. It 
requires a local oscillator signal of +15dBm and has an insertion loss of 6dB. The image 
rejection defined as the ratio of image power to RF frequency power, is better than 20dB. 
During normal running the local oscillator frequency is always adjusted to 10.7MHz 
below the measured cavity resonant frequency so that the cavity resonance is centered at 
10.7MHz in the IF. 

Double heterodyne receivers

IMAGE-REJECT MIXER



Early ADMX Electronics - Power Budget
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Component Gain (dB) Power per 125Hz at 
Output (dBm)

Cavity

Flexible Cable
to Analysis Hut

Cryogenic 
Amplifiers

Image Reject Mixer

1st IF Amplifier

Crystal Filter

Second IF Amplifier

IF - AF Mixer

34

-6

30

-

-7

-3

30

-7

Total Output Power
(dBm)

-170*

-136

-107

-114

-84

-87

-57

-64

-101*

-67

-38

-45

-15

-60

-30

-37

Room Temperature
'Post Amplifier' 35 -101 -32

*Assumes that the 1st cryogenic amplifier has a bandwidth of 1GHz and
that the sum of the cavity and amplifier noise temperatures is 6K.  

 
Table 3.1  Power levels at different points in the receiver electronics chain 

 
3.5.4 The FFT Spectrum Analyser and a Typical Power Spectrum. 
 
The FFT spectrum analyzer is a Stanford Research Systems SRS760. It has a maximum 
sampling rate of 256kHz. Each FFT spectrum is acquired over an 80s integration time 
and consists of 400 125Hz bins spanning the frequency range 10-60kHz. Uniform 
windowing is employed. Figure 3.21 shows a typical trace (recall that a trace is defined 
as the linear average of 10,000 power spectra taken at fixed cavity tuning settings f0) 
taken during production running. 
 

Know power over full
bandwidth and don’t

let it rise above about
0dBm

Noise contribution
from electronics 
chain in a 125Hz

bandwidth

Component
gains



Amplifier noise temperature measurements

Amplifiers contribute noise, but how much? Measuring the noise contribution of an 
amplifier isn’t simple. For a start, absolute measurements of power are very hard. 
Secondly, amplifiers behave badly when their inputs are not connected to anything, 
but if you connect something it will also contribute noise. It is not so easy to 
separate amplifier and source noise. Furthermore, the bandwidth of a power meter 
is rarely known absolutely.

Hot-Cold Load Method

The problem of measuring noise of amplifiers

Z0 = 50⌦

50⌦

POWER
METER

AMPLIFIER
UNDER TEST
INPUT IMPEDANCE  
50 ohms,
NOISE TEMPERATURE

G

TN
POUT(T ) = kBTBG+ kBTNBG

SOURCE
RESISTOR

TEMPERATURE

POUT(T )

T

T

Slope is
Vertical axis intercept is
Ratio of vertical axis intercept to slope is
Horizontal axis intercept is

kBBG

kBTNBG

0

TN

�TN

Mitchell Perry
Will need help on this bit. I'm not following.



How to handle signal power to noise 
power ratios of order 1.

ADMX already achieves sensitivity to KSVZ and DFSZ axions, albeit with 
very slow coverage of the mass space. How are they doing this? The answer
is by exploiting the signals persistence in time and power, and stable frequency.

I’ve carefully avoided using the term signal to noise ratio, because the ratio of
the signal power to the raw noise power in the signal bandwidth is NOT the
signal to noise ratio. To appreciate this consider the sketch below.

FREQUENCY

PO
W
ER

SHORTER	INTEGRATION/	
LOWER	BANDWIDTH

FREQUENCY

PO
W
ER

LONGER	INTEGRATION/	
HIGHER		BANDWIDTH

The figure shows power versus frequency in the vicinity of a toy axion signal,
taken after short and longer integration times. As the integration time increases,
the bin-to-bin fluctuations in the noise drop, leaving the signal visible on top
of the noise that appears at all frequencies.

This intuitive fact is formalised in the radiometer equation, a key result that
we shall spend some time looking in to.



The Radiometer Equation.
SNR =

PS

�PN

=
PS

PN

p
Bt

FREQUENCY

PO
W
ER

SHORTER	INTEGRATION/	
LOWER	BANDWIDTH

PN
PS �PN

The radiometer equation is useful here because the signal is at a static
frequency, and the noise at surrounding frequencies is relatively flat (because
the cavity resonance is much wider band than the signal peak). Thus the
signal appears as excess power in its bandwidth on top of the noise power 
that is in every bin.

Whether the signal is discernible or not depends not depends on whether the
bin-to-bin fluctuations in the noise swamp the signal. The radiometer equation
tells you how long you have to integrate for to discern the signal against the 
background of these fluctuations.

B :
PS :

�PN :

bandwidth
signal power

PN : noise power
t : integration time

r.m.s. of bin-to-bin
fluctuations in noise

Mitchell Perry
Is this just double type mistake?



Proof of the radiometer equation - 1
The probability density of a classical system having an energy E is given by
the Maxwell Bolzmann distribution. 

where                  and          is some function of temperature. This normalises
to unity, integrated over all energies, so

⇥ = kBT f(⇥)

Z
p(E) dE =

Z
dEf(⇥)e�

E
⇥ = 1

Differentiate this with respect to ⇥

p(E) = f(⇥)e�
E
⇥

Z
dE

✓
df

d⇥
e�

E
⇥ + f(⇥)

E

⇥2
e�

E
⇥

◆
= 0

Rearranging
1

f(⇥)

df

d⇥

Z
dE f(⇥)e�

E
⇥ +

1

⇥2

Z
dEf(⇥)Ee�

E
⇥ = 0

The expectation of any function of energy is given by

h(E) =

Z
dEh(E)f(⇥)e�

E
⇥



Proof of the radiometer equation - 2
1

f(⇥)

df

d⇥

Z
dE f(⇥)e�

E
⇥ +

1

⇥2

Z
dEf(⇥)Ee�

E
⇥ = 0

Simplifies to 1

f(⇥)

df

d⇥
+

Ē

⇥2
= 0

or df

d⇥
= � Ēf(⇥)

⇥2

Next start with the expectation value of the energy

E =

Z
dE Ef(⇥)e�

E
⇥

Differentiating with respect to ⇥
dE

d⇥
=

Z
dE E
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Substituting in for               and rearrangingdf/d⇥

dE
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= � Ē
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Z
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1
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Z
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⇥
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⇥2 dĒ

d⇥
= E2 � Ē2 = �2

E

or, in terms of T:
�2
E = kBT

2 dĒ

dT



Proof of the radiometer equation - 3
This result is quite general, applicable to any expression where an average
energy of a classical system is expressed in terms of its temperature. We
apply it to a Johnson noise emitter.

dĒ

dT
= kBBtĒ = kBTBt

P̄ = kBTB

�2
E = kBT

2 dĒ

dT
= k2BT

2Bt

�E = kBT
p
Bt

�E

Ē
=

1p
Bt

Divide top and bottom on the left by time to go from energies and powers,
and recognise that both the average and spread of energies are of noise.

�PN

PN
=

1p
Bt

Rearranging and multiplying
by the signal power,

which is the radiometer equation.

PS

�PN

=
PS

PN

p
Bt



Proof of the radiometer equation - 3
Search in practice

• Move tuning rods to a new position, corresponding to a new frequency 
of the TM010 mode resonance.

• Use a network analyser to measure the transmitted power between two 
ports (one weakly coupled, the other critically coupled) of the cavity.

• Identify the right mode, and measure its frequency and quality factor.
• Set the local oscillator frequency for the first mixer to heterodyne this 

mode frequency down to the intermediate frequency (IF).
• Bandpass filter in the IF - either with a hardware crystal filter or using a 

digital filter.
• Either heterodyne down again to a lower frequency then digitise, or 

digitise at the IF and then decimate before taking a Fourier transform.
• Write the power spectrum over the cavity resonance to disk
• Rinse and repeat….

• Now open the data off-line and try and make sense of it all.



What raw data looks like
In practice, the power spectrum of a cavity coupled to an amplifier has

structure over the bandwidth of the cavity resonance. However, this 

structure is frequency dependent, and reflects the characteristics of the 

circuit connecting the amplifier to the cavity, and the input components

of the amplifier itself. Here are some examples: 
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Figure 4.2  Four receiver corrected traces at different cavity resonant frequencies. 

The collection of points is the power spectrum, the smooth lines are the fit 
to the power spectrum to be discussed in Section 4.2.4. 

 
Not only are the receiver corrected traces asymmetric, the asymmetry is frequency 
dependent. This implies it is related to the coupling between the resonant cavity and the 
1st cryogenic amplifier. This coupling is quite complicated because there are noise 
sources both in the cavity and in the amplifier, and a non-negligible length of 
transmission line between the two. In order to understand the asymmetric structure I must 
develop an equivalent circuit model of the amplifier coupled to the cavity.  
 
4.2.4 Equivalent Circuit Model for the Resonant Cavity  
Coupled to the First Cryogenic Amplifier 
 
My  equivalent circuit for the resonant cavity coupled to the amplifier shown in Figure 
4.3. 
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Background shape removal
Technique 1: use an average of nearby spectra
Neighbouring spectra have similar shapes, so an average of many 

accumulated power spectra can be used to normalise spectra. eg, 

use an average of n spectra, in which the rms noise is reduced by

a factor of

p
n

Normalising to an average adds noise to the signal, but it turns out that

this isn’t such a large effect. If the fluctuations about the mean in a single

spectrum are a fraction p of the power, then the difference between a 

single spectrum and the average of n spectra has an error

p

r
1 +

1

n
Where n=10 this is an additional 5% error, which

is manageable.

Disadvantage of this method is that any large excursions appearing in

multiple spectra cause confusing nests of signals in the normalised data.



Technique 2: model and fit the background shape using
a mathematical model derived from an equivalent circuit.

P (�f) =
kBBG2

1 + 4(�f)2

�2

✓
(TC + TV + TI) +

4(�f)

�
(TI � TV ) sin(2kL)

+
8(�f)2

�2
((TV + TI) + (TI � TV ) cos(2kL))

◆

This complicated function is used to construct an empirical fit having 

5 free parameters
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Figure 4.3  The equivalent circuit for the resonant cavity coupled to 

the 1st cryogenic amplifier 
 
It is important to realize that this equivalent circuit is only an approximation. I have 
assumed that the amplifier, which is actually a sophisticated balanced design, can be 
represented as a perfectly matched 50Ω load together with a current and voltage noise 
sources. I calculate the power spectrum at the amplifier output based on this equivalent 
circuit in Appendix 4. I give only the result of the calculation here. Define P as the power 
at the amplifier output and Δ is displacement from the center frequency of the power 
spectrum in units of 125Hz. Then the power spectrum from the equivalent circuit is: 
 

P(Δ) =
a1 + 8a3(

Δ − a5
a2

)2 + 4a4 (
Δ − a 5
a2

)

1 + 4(Δ − a5
a2

)2
        (4.1) 

 
where the coefficients a1 - a4 are: 
 

a1 = TC + TI + TV

a2 =
f0
Q

a3 = (TI + TV + (TI − TV)cos2kL)
a4 = (TI − TV )sin 2kL

        (4.2) 
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Figure 4.3  The equivalent circuit for the resonant cavity coupled to 

the 1st cryogenic amplifier 
 
It is important to realize that this equivalent circuit is only an approximation. I have 
assumed that the amplifier, which is actually a sophisticated balanced design, can be 
represented as a perfectly matched 50Ω load together with a current and voltage noise 
sources. I calculate the power spectrum at the amplifier output based on this equivalent 
circuit in Appendix 4. I give only the result of the calculation here. Define P as the power 
at the amplifier output and Δ is displacement from the center frequency of the power 
spectrum in units of 125Hz. Then the power spectrum from the equivalent circuit is: 
 

P(Δ) =
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where the coefficients a1 - a4 are: 
 

a1 = TC + TI + TV

a2 =
f0
Q

a3 = (TI + TV + (TI − TV)cos2kL)
a4 = (TI − TV )sin 2kL

        (4.2) 
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the 1st cryogenic amplifier 
 
It is important to realize that this equivalent circuit is only an approximation. I have 
assumed that the amplifier, which is actually a sophisticated balanced design, can be 
represented as a perfectly matched 50Ω load together with a current and voltage noise 
sources. I calculate the power spectrum at the amplifier output based on this equivalent 
circuit in Appendix 4. I give only the result of the calculation here. Define P as the power 
at the amplifier output and Δ is displacement from the center frequency of the power 
spectrum in units of 125Hz. Then the power spectrum from the equivalent circuit is: 
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where the coefficients a1 - a4 are: 
 

a1 = TC + TI + TV

a2 =
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Q

a3 = (TI + TV + (TI − TV)cos2kL)
a4 = (TI − TV )sin 2kL

        (4.2) 

 

a5 is an offset of the centre of

the resonance from the centre of

the spectrum.

Technique 2: Performance of the fit.
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Figure 4.4  Fit Parameters a2, a3, and a4 vs. resonant frequency for each trace in run 1. 



Combining 
raw spectra
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Optimal linear combination of power spectra
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SOME FREQUENCY

Consider two component spectra in which the following quantities take different values:

P1 P2

�2�1 measured power in bin

h1 h2 height of cavity resonance relative to peak height

�1 �2 standard deviation of power across spectrum

signal power at that frequency for an assumed axion model

The optimal combination turns out to be
�WS =

h1P1

�2
1
�1 +

h2P2

�2
2
�2

h1P1

�2
1

+ h2P2

�2
2



Details of the 
‘optimal’ data 
combining 
algorithm
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Crop off the 1st 100 and last 125 bins 
of each raw spectrum. Divide spectrum 
by IF transferred power. Fit the IF 
normalized spectrum to a five 
parameter equivalent circuit model 
Divide the spectrum by the fit function 
and subtract 1. 

For each trace normalized read/measure:
  1)Γ, the width of the TM010 resonance.
  2)TN, the system noise temperature.
  3)N, the number of averaged spectra per trace.
  4) σ(δ), the rms noise level in the normalized
      trace.

Multiply the fluctuations σ(δ) in each 
raw trace by kBB.

Make 4 combined data streams for each 125Hz bin
accross the frequency range scanned
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Figure 4.11  A block diagram of the data combining algorithm 
as implemented in software 



Post-data combining steps and search 
sensitivity

• Expected signal is a few hundred Hz wide.
• Signal MAY be shaped like a Maxwell-Bolzmann distribution.
• If your binning has the width of the signal, the signal may be about 

evenly split between neighbouring bins, and your search sensitivity 
is then degraded by yet another factor of 2 in single bin searches.

• A better strategy is to make the bins significantly narrower than the 
anticipated signal width.

• In ADMX 1, we had 125Hz bins for an expected signal width of 
about 600Hz. We then co-added (boxcar averaged) overlapping 
neighbouring sets of 6 bins.

• This makes the output data of the co-adding algorithm bin-to-bin 
correlated.

• This means that the sensitivity of your search can no longer be 
deduced directly from knowledge of the Gaussian distribution; the 
data is still Gaussian, but it is correlated.

• As in most experiments, you end up running a simulation to 
determine your sensitivity.



Simulation strategy
1. Randomly generate n frequencies in the search range of your data. 

Ensure they don’t overlap (only expect 1 axion signal).

2. Loop over your raw data set. For each spectrum, determine whether 

one or more signal frequencies fall within the spectrum.

3. For each raw (uncombined) power spectrum in your measured data, 

create a surrogate with gaussian noise replacing the physical noise in 
the spectrum, having the same RMS width. Add signals from your 
chosen model partitioned between appropriate bins of each raw 
spectrum, using the physically measured position of the Lorentzian 
resonant peak to modulate the signal power.


4. Apply your standard data combining, bin coadding, and thresholding 
algorithm to the synthetic data. Measure the fraction of signals 
identified by your algorithm.


5. Repeat these steps for a range of signal powers. The signal power 
leading to detection of 90% of your signals is the signal power you 
have excluded at 90% confidence, as long as you haven’t found 
anything that you can’t eliminate in your actual measured data.



What if you DO see something in your data?
Here cavity axion searches have an edge over experiments looking for

dark matter particles that interact via discrete particle collisions, such as

direct WIMP searches.


The axion signal should be (1) persistent at a given frequency and

(2) only present if there is a static magnetic field, furthermore 

(3) proportional in signal power to the square of that magnetic field.


Therefore there are several strategies that you can use to ‘check’ signals

that you may have seen in your data.


* Go back to the same frequency and see if the signal is still there. If it’s 
gone, then that eliminates at least some axion models.


* Detach your receiver from the heavily shielded insert and measure the 
same frequency in free space. Background fields may be much bigger 
in free space; axion fields should vanish.


* Ramp down the magnetic field and see if signal power is proportional 
to the square of the magnetic field.



5

FIG. 4. 90% confidence exclusion on axion-photon coupling as a function of axion mass for the Maxwell-Boltzmann (MB)
dark-matter model and N-body model. Blue Previous limits reported in [32]. Orange Previous limits reported in [22]. Green

Limits from this work. Darker shades indicates limits set for the MB model [30] and the lighter shade indicates limits set for
the N-body model [31].

The signal at 730.195 MHz (Fig. 3) maximized on res-
onance and was consistent in power and linewidth to the
signal expected from a DFSZ axion. This result triggered
a decision to ramp the magnetic field down to determine
whether the power of the signal would scale as B2, in a
manner consistent with an axion signal. Before the pro-
cedure was initiated, the candidate was revealed to be
a synthetic axion signal. Instead the synthetic injection
was disabled and the region around the candidate was
rescanned. No signal appeared at 730.195 MHz, and thus
all candidate axion signals were excluded. We concluded
that either the axion was not within the explored range,
that the axion dark-matter density is a small fraction of
the halo density, or that the axion-photon coupling con-
stant is significantly below the prediction for DFSZ.

Given the absence of axion-like signals, a 90% upper
confidence limit was set on the axion-photon coupling
over the scanned mass range. Due to the loss of sensitiv-
ity at mode crossings, we do not report limits over some
regions; a detailed list is given in Table I. For models
where axions make up 100% of dark-matter, these limits
exclude DFSZ axion-photon couplings between 2.66 and
3.31 µeV for both isothermal sphere halo models and N-
body simulations (Fig. 4). These results represent a fac-
tor of four increase in mass coverage over those reported

in [22].

ADMX will utilize a similar cavity with larger tuning
rods and improved thermalization between the dilution
refrigerator and quantum amplifier package to continue
to search dark-matter axions at higher masses with in-
creased sensitivity. These future searches, built on cur-
rent research and development [33, 34], will probe even
more deeply into the well-motivated yet unexplored ax-
ion parameter space. A discovery could be made at any
moment.

This work was supported by the U.S. Depart-
ment of Energy through Grants Nos. de-sc0009723,
de-sc0010296, de-sc0010280, de-sc0010280, DE-
FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-
07NA27344, and DE-C03-76SF00098. This manuscript
has been authored by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, O�ce of Science, O�ce of
High Energy Physics. Additional support was provided
by the Heising-Simons Foundation and by the LDRD
o�ces of the Lawrence Livermore and Pacific North-
west National Laboratories. LLNL Release Number:
LLNL-JRNL-763299.

Recent ADMX results
ADMX hasn’t yet detected a signal that has passed all of these tests.

https://arxiv.org/abs/1910.08638 [ under review at PRL ]

https://arxiv.org/abs/1910.08638
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Low noise amplifier techniques - 1
HFET amplifiers (commercial name of HFETs is HEMTs - high electron

mobility transistors

Modern HFETs can achieve 1K noise temperatures 
(www.lownoisefactory.com).

Matching is an issue! No ferrites unless you have a field-free region in your 
detector. Use a balanced design.

142 R.E Bradley~Nuclear Physics B (Proc. Suppl.) 72 (1999) 137-144 

Microstrip is a layered structure consisting of a thin 
copper strip supported over a ground plane by a 
dielectric material. The circuit board material for the 
NRAO amplifiers is low loss RT Duroid ® (er=10.5) 
by Rogers Corporation. The input and output hybrid 
couplers are Lange-type [26] couplers that are 
meandered to reduce their physical size. The pair of 
FHX13X HFET chips are located just to the right of 
the copper coils. LEDs, included in the amplifier 
cover (not shown), are located directly above the 
HFETs for illumination if necessary. All five 
amplifiers are similar in construction to the 510-690 
MHz amplifier described here (the physical size will 
vary). 

The amplifier under test is mounted to the cold 
plate of a closed-cycle refrigerator capable of cooling 
to approximately 14 K. The input to the amplifier is 
composed of a well-calibrated noise diode outside the 
dewar, the dewar thermal and vacuum window, and a 
20 dB attenuator thermally strapped to the cold plate. 
The circuit losses of this input network were measured 
a priori using an HP 8510 network analyzer. The 
noise temperature and forward gain are measured by 
using the Y-factor method together with the cold 
attenuator technique which requires measuring the 
power at the output of the amplifier under two input 
noise power conditions: hot load and cold load. The 
hot load is the noise diode power in the "on" state 
attenuated by 20 dB plus the thermal noise of the cold 

attenuator. The cold load is the diode in the "off" state 
(300 K) attenuated by 20 dB plus the thermal noise of 
the cold attenuator. The power at the output of the 
amplifier was measured as a function of frequency 
using a superheterodyne receiver and precision square- 
law detector. The measured noise temperature and 
forward gain for the five NRAO balanced amplifiers 
are shown in Figures 6 through 10. 

A somewhat different test setup was used to 
measure the input match. The amplifier was mounted 
inside the dewar and thermally strapped to the 
refrigerator cold plate. The HP 8510 network 
analyzer, calibrated for a single-port measurement, 
was connected to amplifier input via the dewar 
transition. The output of the amplifier was terminated 
into a 50 ohm load. The amplifier was cooled to 14 K 
and the input match was measured as a function of 
frequency. For all of the amplifiers presented here, the 
input match is better than -15 dB over the specified 
bandwidth. 
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Figure 5. Photograph of the NRAO 510-690 MHz 
balanced amplifier (cover removed). 

Figure 6. Measured noise temperature and gain of 
the 290-395 MHz balanced amplifier at 14 K. 

Balanced design by NRAO - Bradley

Nucl. Phys. B Suppl. 72 (1999) 137-144

http://www.lownoisefactory.com


HFET performance

Cooling HFET amplifiers below a physical 
temperature of about 1K does not result in 
a commensurate decrease in noise  
temperature. Mechanism thought to be  
trapping of electrons in the two dimensional  
electron gas contained in the HFET gate 
region. 

Further improvements in noise temperature  
have proceeded using a competitor 
technology, BUT HFET devices still play a  
critical role as low cost low-noise post 
amplifiers to quantum devices stages.



Squids with varactor matching
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https://sites.google.com/site/squiddevices/home

Institute of Applied Sciences & Intelligent Systems “E. Caianiello”



Squids measured noise vs. frequency



Josephson Parametric Amplifiers

JPA Operation Wave Mixing Processes 

Non-linear 

Medium 

ωpump 

ωsignal 
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ωidler 

Three types: 

1. non-degenerate 
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4GHz - 9GHz JPA 

•  Perforated TiN ground plane 

•  Josephson critical current around 3 µA 

•  Single SQUID design 

Junction Images 

Yanjie Qiu (Jack), Allison Dove, Andrew Eddins, Ifran Siddiqi

Josephson Parametric Amplifiers 

Yanjie Qiu (Jack), Allison Dove, Andrew Eddins, Irfan Siddiqi 
 

Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley, California 94720, USA 

Workshop on Microwave Cavities and Detectors for Axion Research 
 Livermore Valley Open Campus  

January 12, 2017 



JPA Package Redesign for ADMX 

o  No hanging thermalization 
strap o  Built-in dc connections 

reinforced with Stycast 

800MHz JPA @620MHz 

•  Gain: 25dB peak 
•  Bandwidth: 2.5 MHz 
•  Pump power: -104.17dBm 
•  Coil current: -7.484mA 

Gain performance
Yanjie Qiu (Jack), Allison Dove, Andrew Eddins, Ifran Siddiqi



Using a JPA with ADMX

For noise temperature
determinationDotted line

represents
region inside
magnetic field
free enclosure
(‘Squidadel’)

RF Filter



Travelling wave parametric amplifiers

where as and ai are the signal and idler amplitudes, ΔkL ¼
2kp − ks − ki is the phase mismatch in the low pump power
limit, and the coupling factors αp, αs, and αi represent the
change in thewavevector of the pump, the signal, and the idler
due to self- and cross phasemodulation induced by the pump.
The coupling factors depend on the circuit parameters (see
Eqs. (15), (16), and (17) in the Supplemental Material [31])
and scale quadratically with the pump current. Maximum
parametric gain is achieved when the exponential terms are
constant: the phase mismatch, Δk ¼ ΔkL þ 2αp − αs − αi,
must then be zero. The coupledwave equations (1) and (2) are
similar to the coupled amplitude equations for an optical
parametric amplifier [32] and have the solution

asðxÞ ¼ asð0Þ
!
cosh gx −

iΔk
2g

sinh gx
"
eiΔkx=2 ð3Þ

with the gain coefficient g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κsκ%i − ðΔk=2Þ2

p
. For zero

initial idler amplitude and perfect phase matching, this leads
to exponential gain, asðxÞ ≈ asð0Þegx=2. For poor phase

matching, g is imaginary and the gain scales quadratically
with length rather than exponentially.
Without resonant phase matching, the parametric ampli-

fication is phase matched at zero pump power, but rapidly
loses phase matching as the pump power increases.
Neglecting dispersion and frequency dependent imped-
ances, the exact expression for the phase mismatch can
be simplified to yield Δk ≈ 2kp − ks − ki − 2kpκ, where
κ ¼ ða2k2pjZcharj2=16L2ω2

pÞðIp=I0Þ2. The nonlinear proc-
ess creates a pump power dependent phase mismatch which
can be compensated for by increasing the pump wave
vector.
In Fig. 2, we show the increase in gain due to resonant

phase matching for the device described in Fig 1. Resonant
phase matching increases the gain by more than one order
of magnitude from 10 dB to 21 dB [Fig. 2(a)] for a pump
current of half the junction critical current and a pump
frequency, 5.97 GHz, on the lower frequency tail of the
resonance, as shown in the inset of Fig. 1(c). The increase
in the pump wave vector due to the resonance compensates
for the phase mismatch from cross and self-phase modu-
lation [Fig. 2(b), black dashed line], leading to perfect
phase matching near the pump frequency [Fig. 2(b),
purple]. For higher pump currents, the benefits are even
more pronounced: the RPM (resonantly phase matched)
TWPA achieves 50 dB of gain (compared to 15 dB for the
TWPA) with a pump current of 0.7I0 [Fig. 2(c)]. Achieving
50 dB of gain over a 3 GHz bandwidth would require a
larger junction critical current than used here to prevent
gain saturation by vacuum photons. By varying the pump
frequency relative to the resonance, the parametric ampli-
fication can be phase matched for arbitrary pump currents
[Fig. 2(d)]. Due to this ability to tune the pump phase
mismatch over the entire range of possible wave vectors,
this technique is highly flexible.
We now examine the scaling relations for the gain in

order to obtain the optimum gain through engineering
the linear and nonlinear properties of the transmission
line. Simplifying the expression for the gain by assuming
perfect phase matching and neglecting the effects of the
resonant element and the junction resonance on the
dispersion, we find that the exponential gain coefficient
is directly proportional to the wave vector g ∝ kpI2p=I20. See
the Supplemental Material [31] for full expressions for the
wave vector, characteristic impedance, and the gain with
parameter variations using stochastic calculus [33]. Thus,
for a fixed pump strength relative to the junction critical
current, the gain coefficient is proportional to the electrical
length. In other words, a larger wave vector and thus slower
light leads to a larger effective nonlinearity due to the
higher energy density; this effect is well known in photonic
crystals [34]. For convenient integration with commercial
electronics, the characteristic impedance is designed to be
Zchar ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ðCþ CcÞ

p
≈ 50 Ω, which fixes the ratio of

the inductance and the capacitance. The wave vector is

FIG. 1 (color online). Resonantly phase-matched traveling
wave parametric amplifier. (a) Signal photons are amplified
through a nonlinear interaction with a strong pump as they
propagate along the 2000 unit cell transmission line with a lattice
period of a ¼ 10 μm. (b) In each unit cell a Josephson junction, a
nonlinear inductor, is capacitively coupled to an LC resonator.
The circuit parameters are Cj¼329 fF, L ¼ 100 pH, C ¼ 39 fF,
Cc ¼ 10 fF, Cr¼7.036pF, Lr ¼ 100 pH, I0 ¼ 3.29 μA. (c) The
LC circuit opens a stop band (red line) in the dispersion relation
of the TWPA (black dashed line) whose frequency depends on the
circuit parameters. In the inset, we plot the pump frequency to
phase match a pump current of 0.3I0 (blue), 0.5I0 (purple), and
0.7I0 (green), where I0 is the junction critical current.
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proportional to the product of the capacitance and the
inductance k≈ ω=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðCþ CcÞ

p
. Increasing both the

capacitance and the inductance or decreasing the unit cell
size are effective strategies for increasing the gain per unit
length while maintaining impedance matching for a 50 ohm
load. The current design represents a trade-off between unit
cell size and component values which is convenient to
fabricate.
Next we consider the dynamic range of the amplifier.

The upper limit of the dynamic range is due to pump
depletion: the pump transfers energy to the signal and the
idler, which reduces the parametric gain. To investigate this
regime, we solve for the coupled wave equations without

the undepleted pump approximation, resulting in four
coupled nonlinear differential equations (Eqs. (43)–(46)
in the Supplemental Material [31]), which are solved by
transforming them to real differential equations and
expressing them as a Jacobi elliptic integral [35]. The gain
as a function of input signal power calculated including
pump depletion (solid lines in Fig. 3) is in excellent
agreement with the approximate yet general solution for
pump depletion (dashed lines in Fig. 3) in a four photon
parametric amplifier [36]:

G ¼ G0

1þ 2G0I2s=I2p
; ð4Þ

where G0 is the small signal gain in linear units and Is
and Ip are the input signal and pump currents. From Eq. (4),
the gain compression point is approximately P1 dB ¼
Pp=ð2G0Þ. Thus, the threshold for gain saturation is inde-
pendent of the specific device configuration and depends
only on the small signal gain and the pump power. The

FIG. 3 (color online). Effect of pump depletion on dynamic
range. (a) The gain as a function of input signal current
(normalized to the pump current) for a small signal gain of
10, 15, and 20 dB obtained with a pump current of 0.5I0 and
device lengths of 1150, 1530, and 1900 unit cells. The approxi-
mation for the gain depletion (dashed lines) from Eq. (4) is in
excellent agreement with the result obtained by solving the full
nonlinear dynamics (solid lines). (b) P1 dB, the input signal power
where the gain decreases by 1 dB, as a function of junction
critical current I0 with the pump current fixed at 0.5I0. The black
dashed line corresponds to the device considered in this Letter,
which has a gain compression point of P1 dB ¼ −87, −93, and
−98 dBm, for a gain of 10, 15, and 20 dB for a junction critical
current of I0 ¼ 3.29 μA.

FIG. 2 (color online). Gain of the RPM TWPA. (a) The gain as
a function of signal frequency in dB with RPM (purple line) and
without (black dashed line) for a pump current of 0.5I0 and a
pump frequency of 5.97 GHz. (b) The phase mismatch with
(purple line) and without (black dashed line) RPM. (c) The peak
gain as a function of pump current without RPM (black dashed
line) and with RPM for three different pump frequencies, which
phase match the parametric amplification for pump currents of
0.3I0 (red line), 0.5I0 (purple line), and 0.7I0 (green line). (d) The
phase mismatch as a function of pump current. The dots mark the
pump current where the parametric amplification is perfectly
phase matched.
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capacitance and the inductance or decreasing the unit cell
size are effective strategies for increasing the gain per unit
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load. The current design represents a trade-off between unit
cell size and component values which is convenient to
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Next we consider the dynamic range of the amplifier.

The upper limit of the dynamic range is due to pump
depletion: the pump transfers energy to the signal and the
idler, which reduces the parametric gain. To investigate this
regime, we solve for the coupled wave equations without
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in the Supplemental Material [31]), which are solved by
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Pp=ð2G0Þ. Thus, the threshold for gain saturation is inde-
pendent of the specific device configuration and depends
only on the small signal gain and the pump power. The

FIG. 3 (color online). Effect of pump depletion on dynamic
range. (a) The gain as a function of input signal current
(normalized to the pump current) for a small signal gain of
10, 15, and 20 dB obtained with a pump current of 0.5I0 and
device lengths of 1150, 1530, and 1900 unit cells. The approxi-
mation for the gain depletion (dashed lines) from Eq. (4) is in
excellent agreement with the result obtained by solving the full
nonlinear dynamics (solid lines). (b) P1 dB, the input signal power
where the gain decreases by 1 dB, as a function of junction
critical current I0 with the pump current fixed at 0.5I0. The black
dashed line corresponds to the device considered in this Letter,
which has a gain compression point of P1 dB ¼ −87, −93, and
−98 dBm, for a gain of 10, 15, and 20 dB for a junction critical
current of I0 ¼ 3.29 μA.

FIG. 2 (color online). Gain of the RPM TWPA. (a) The gain as
a function of signal frequency in dB with RPM (purple line) and
without (black dashed line) for a pump current of 0.5I0 and a
pump frequency of 5.97 GHz. (b) The phase mismatch with
(purple line) and without (black dashed line) RPM. (c) The peak
gain as a function of pump current without RPM (black dashed
line) and with RPM for three different pump frequencies, which
phase match the parametric amplification for pump currents of
0.3I0 (red line), 0.5I0 (purple line), and 0.7I0 (green line). (d) The
phase mismatch as a function of pump current. The dots mark the
pump current where the parametric amplification is perfectly
phase matched.
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Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers
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We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric
amplifiers in order to achieve high gain over a broad bandwidth. Using “resonant phase matching,” we
design a compact superconducting device consisting of a transmission line with subwavelength resonant
inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a
saturation power of −98 dBm. Such an amplifier is well suited to cryogenic broadband microwave
measurements such as the multiplexed readout of quantum coherent circuits based on superconducting,
semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.

DOI: 10.1103/PhysRevLett.113.157001 PACS numbers: 85.25.-j, 42.65.Yj, 74.81.Fa, 84.30.Le

Josephson parametric amplifiers [1–5] routinely
approach quantum-noise-limited performance [6–9] and
are currently used in sensitive experiments requiring high-
fidelity detection of single-photon-level microwave signals,
such as the readout and feedback control of superconducting
quantum bits [10–17], and magnetometry with the promise
of single-spin resolution [3]. To obtain a large parametric
gain, the interaction time with the material nonlinearity—
the order-unity nonlinear inductance of the Josephson
junction—must be maximized. Current Josephson para-
metric devices increase the interaction time by coupling the
junction to a resonant cavity, albeit at the expense of
instantaneous bandwidth. In contrast, traveling wave para-
metric amplifiers (TWPAs) [18–21] achieve long interaction
times by utilizing long propagation lengths rather than
employing multiple bounces in a cavity, thereby avoiding
the inherent gain-bandwidth trade-off associated with cavity
based devices. A major challenge in the design of TWPAs,
however, is that optimum parametric gain is achieved only
when the amplification process is phase matched. TWPAs
based on Josephson junctions have been investigated theo-
retically [22–25] and experimentally [26–28] but have not
demonstrated sufficient gain, in part due to phase-matching
limitations, to replace existing semiconductor amplifier
technology. TWPAs based on the weaker nonlinear kinetic
inductance of thin titanium nitride wires and phase matched
through periodic loading have also been demonstrated
[29,30], but they require significantly longer propagation
lengths and higher pump powers to achieve comparable
gain. In this Letter, we show that by adding a resonant
element into the transmission line, phase matching and
exponential gain can be achieved over a broad bandwidth.
The proposed traveling wave parametric amplifier con-

sists of a Josephson-junction-loaded transmission line
[Fig. 1(a)] with a capacitively coupled parallel LC reso-
nator shunt to allow phase matching. The LC resonator

shunt [colored red in Figs. 1(a) and 1(b)] creates a stop
band [Fig. 1(c), red line] in the otherwise approximately
linear dispersion relation [Fig. 1(c), black dashed line].
In the presence of a strong copropagating pump wave, a
weak signal propagating in the TWPA is amplified through
a four wave mixing interaction. Four wave mixing in the
weak pump limit is perfectly phase matched for a linear
dispersion; however, a strong pump modifies the phase
velocities through self- and cross phase modulation, gen-
erating a phase mismatch and preventing exponential gain.
We compensate for this phase mismatch by tuning the
pump frequency near the pole of the LC resonator. In a
dissipationless system such as a superconducting circuit, a
resonant element opens a stop band [inset of Fig. 1(c)] in
which the wave vector is purely imaginary, surrounded by
regions in which the wave vector is purely real and varies
from 0 to π=a, where a is the size of the unit cell. The wave
vector of the pump can be set to arbitrary values by varying
the frequency with respect to the resonance in order to
eliminate the phase mismatch.
We now calculate the value of the phase mismatch and

the expected device performance when phase matching is
achieved. We use a first principles model for the nonlinear
dynamics in the Josephson-junction transmission line [24,25],
which has been validated by experiments [28]. By making
the ansatz that the solutions are traveling waves, taking the
slowly varying envelope approximation, and neglecting pump
depletion, we obtain a set of coupled wave equations which
describe the energy exchange between the pump, the signal,
and the idler in the undepleted pump approximation (see
Supplemental Material [31] for the derivation):

∂as
∂x − iκsa!i e

iðΔk Lþ2αp−αs−αiÞx ¼ 0; ð1Þ

∂ai
∂x − iκia!seiðΔk Lþ2αp−αs−αiÞx ¼ 0; ð2Þ
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A practical resonant 
feedback 

circuit 

Courtesy of Holger Notzel, 
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Feedback resonance
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Resonant filter

Attenuator

Maintain open-loop gain at <1 so the circuit doesn’t 
start to oscillate by using a suitably large attenuator.

https://arxiv.org/abs/1805.11523



Is resonant feedback through a circuit
equivalent to a cavity resonance ?

The answer is, not quite - but close enough for practical purposes.

+q +q+q+q +q +q+q +q

�q �q�q�q �q �q�q �q

2R

I

J

Cavity TM010 mode Resonant feedback

Cavity Mode: currents in walls complete resonant circuit. 
Capacitor+feedback: feedback loop completes circuit.



What is resonance?

which in the limit where ✓ and ↵ are small becomes

F (ikT � ikA+ ikR) = �m!
2
T. (34)

Combining the two boundary conditions leads to the scattering coe�cients,

s11 =
R

A
=

�m!
2

F

�m!2

F
+ 2ik

=
�a

a+ 2ik

s21 =
T

A
=

2ik
�m!2

F
+ 2ik

=
2ik

a+ 2ik
, (35)

which given the symmetry of the configuration leads to the full scattering matrix

S =

✓ �a

a+2ik

2ik

a+2ik
2ik

a+2ik

�a

a+2ik

◆
(36)

Notice that the reflection and transmission coe�cients are orthogonal in the complex plane,
consistent with the general form of the scattering matrix derived from symmetry configu-
rations independent of the physical system. The scattering matrix is symmetric, which is
physically intuitive because the scattering configuration is symmetric with respect to signals
incident from the left and from the right. In this example, one would expect to arrive at
a scattering matrix following the convention of Equation 29 – symmetric with respect to
reversal of direction, and with the reflection and transmission coe�cients out–of–phase with
each other.

3.1 A third example, Two beads on a wire

We next analyse a wire with two beads on it, as shown in Figure 3. The incident wave fromTwo bead geometry
x = 0

S =

✓ �a
a+2ik

2ik
a+2ik

2ik
a+2ik

�a
a+2ik

◆
=

✓
s11 s12

s21 s22

◆
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Nyquist resonant condition
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s21s12

s22

e2ikL = 1
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2�

�

� = 2�f = vk
L =

n�

2

n�

2

Figure 3: A wire carrying two beads, with uniform tension along it, and waves incident
from the left. The string between the beads contains signals propagating both the the left
and to the right, which we will model as a circulating field.

8

1.) Resonance results when the circulating field, in this 
case between the masses, interferes constructively with 
itself around on a round-trip.

2.) For an incident field to drive the resonance to high 
amplitude, it must be coherent over multiple round trips 
of the circulating field, and losses around the loop must 
be small.



Cavity mode circulating 
field decomposition

Electric fields in the cavity TM010 mode are usually written

E(⇢, t) = E0J0

✓
2.405⇢

R

◆
cos(!t)

This ‘drum mode’ standing wave can be re-cast in terms 
of counter-propagating travelling waves that move  
radial-cylindrically inwards and outwards, through the 
central axis, then bounce off the circular cavity wall, back 
through the axis, bounce off the opposite wall, and return 
again to the axis.

E(⇢, t) =
E0

2
<
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H
(1)
0
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◆
+H

(2)
0
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Axion signal driving a cavity 
resonance

Round trip time of a circulating field around the  
loop is 4R/c, which is 3.4ns. 

De Broglie wavelength of halo axions 
(assuming 1.8 microelectronvolts),

� =
2⇡~c
�mc2

' 830m

so the coherence time is ⌧coh =
�

v0
' 3.4ms

Therefore within the coherence time the circulating 
fields from axions can make a million round trips. 

The fundamental upper limit on resonant enhancement 
of the cavity signal in this cavity mode is

⇡Ncav = 3.1⇥ 106

In practice, losses in the copper walls on reflection  
dominate, and the cavity mode Q is around 35,000.

axion intrinsic Q=



Coherence time and Q of 
axion-driven feedback circuit

This Q is very competitive with that inherent in normal 
conducting cavity modes.

Assume feedback loop involves 20m of RG401 coax and 
a 250MHz ADC/DAC pair, the total delay time round the  
loop is 103 ns (dominated by the cable). This means the 
34,000 cycles around the feedback loop is 1 e-folding of 
coherence, equivalent to a Q of ⇡Ncoh = 107, 000

The equivalent here of the cavity wall losses is the Q of 
the external circuit, controlled by the parameters of the 
feedback filter. Experimental tests will inform the question of 
possible internal losses, but there should be no skin-depth 
losses at the end walls as electric fields terminate on surface 
charges.



Capacitors in parallel - 
a prototype 4-capacitor model
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Electronics in practice

show that using existing amplifier technology it is possible nevertheless to152

maintain a good signal-to-noise ratio for mode oscillations around the feed-153

back loop. Figure 4 shows a more realistic arrangement of amplification154

stages as implemented in a representative axion search. This noise budget is155

approximate; in practice the a detailed noise model of the electronics must156

be constructed to understand the spectral content of the noise background,157

especially in the vicinity of sharp features such as high Q resonances. The
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Figure 4: A schematic of the practical implementation of feedback electronics, showing

ultra-low-noise receiver electronics common to this proposal and more conventional cavity

searches, as well as the feedback path to and from the capacitor, operated far below

cut-o↵, threaded by a large static magnetic field. MSA and HEMT are acronyms for

‘microwave squid amplifier’ and ‘high electron mobility transistor’, respectively. The noise

performance of MSAs, critical to these searches, are discussed in [20, 21]. HEMT amplifiers

for ultra high frequency, low noise applications are discussed in [22, 23].

158

temperature T of a source of Johnson noise in a bandwidth B emits noise159

power P into a balanced sink given by160

P = kBTB. (5)

At a mode frequency of 700MHz corresponding to an axion mass of 2.9µeV,161

assuming a magnetic field of 6.8T, and other experimental parameters cor-162

responding to the ADMX2 experiment configuration [15], the signal power ex-163

pected from a KSVZ [16, 17] model axion converting to photons is 2 ⇥ 10�22 W164
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Resonant electronics

using an image reject mixer, so that digitisation occurs with a sampling rate307

around 10MHz. The proposed idea could utilise this technique, but would308

utilise a higher digitisation rate, around 64MHz, and use two image-reject309

mixers in parallel, so that two out-of-phase IF quadratures are obtained from310

the RF signal stream. Both quadratures are digitised and the resulting data311

is passed through the resonant filter. Figure A.5 shows a schematic of the312

digital electronics. In reality, a single local oscillator would be used, fed313

through a 90� hybrid to yield two out-of-phase local oscillator signals, each314

of which would be common to the corresponding pair of mixers before and315

after the digital electronics. The resonant filter itself utilises an iteration

New approach: Digital 
Resonant feedback

Maybe the resonant structure doesn’t have to be in the cavity.

ADC

ADC

FILTER

DIGITAL
DAC

DAC

SPLITTER COMBINER

AMPLIFIER

LOW NOISE AMPLIFIER

ATTENUATOR

COLD

I−PHASE LOCAL OSCILLATOR

Q−PHASE LOCAL OSCILLATOR
PLATES

WARM

CAVITY

For high Q, but without oscillation, need servo control of the 
open loop gain so that it is marginally less than 1. Advantage 

of this method is that many resonators can run in parallel.

RF 
structure 
operated 

off- 
resonance

Figure A.5: A schematic of the practical implementation of the digital portion of the

electronics. The RF signal is mixed down in two orthogonal quadradratures using image-

reject mixers before a digital filter implements the resonant circuit. The room temperature

amplification stages following the cryogenic low noise amplifier and preceding the splitter

are omitted here.

316

algorithm originally developed for the monitoring of sinusoidal backgrounds317

in gravitational wave detectors. If we represent the two quadratures of the nth
318

sample of input data as the real and imaginary parts of a complex number319

xn, and similarly represent the nth sample of filter output as the real and320

imaginary parts of a second complex number yn, then the filter algorithm321
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Total noise power
100 15kHz wide resonances, separated by 150kHz. 
Q per resonance of approx 1GHz/15kHz=67000. 
Total bandwidth into digital electronics 15MHz. 
Noise in 15MHz band assuming system noise 
temperature of 300mK, -132dBm.

Total integration time for DFSZ
Assume an axion signal bandwidth of 750Hz, 300mK 
system noise, hence a signal-to-noise ratio of (10-22W/
3.1x10-21W).DFSZ sensitivity requires an integration 
time of 1120s, during which we cover 1.5MHz. 
2-40 micro eV corresponds to 4.34GHz bandwidth, so 
that the total integration time is 1120s x 4340/1.5 
which is 37.5 days. This assumes a form factor of 0.4!
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Noise budget
Table 1: Noise budget around the closed loop resonant circuit shown schematically in

Figure 3. The second column is total Johnson noise power into a 750Hz bandwidth,

including both noise from the output of the previous stage, and noise contributed by the

noise temperature at the input of the next component after the labelled location. The

third column is noise power into the same bandwidth including only that due to the

next component after the labelled location. The fourth column is the signal power. The

attenuator will be set so that the open loop gain is in fact slightly less than 0dB to avoid

the circuit going into oscillation, but here the di↵erence between the actual open loop gain

and 0dB is neglected.

Location Total summed
noise into
750Hz band-
width

Noise from lo-
cal component
into 750Hz
bandwidth

Signal
power

[dBm] [dBm] [dBm]

A -175 -178 -190
B -155 -166 -170
C -135 -166 -150
D -115 -150 -130
E -45 -76 -60
F -45 -178 -60
G -175 -178 -190

10

Noise in
15MHz
bandwidth
[dBm]
-132
-112
-92
-72
-2
-2

-132



Future axion searches
• Cavity searches should continue to dominate. No other method 

has sufficient sensitivity. 
• Practical improvements in technology are critical. Best 

established of these is quantum electronics for low noise 
amplification. 

• Advent of practical high field, large magnets with minimal liquid 
helium requirements make these experiments far more 
practical. 

• Possibility of replacing the hard-wall resonant cavity detector 
with something having induced resonances in a comb. Great 
potential for improving scan rate. 

• Still a very difficult job to search what is a large parameter 
space. 

• Like LIGO, maybe we will get lucky.


