Gravity Simulators (a.k.a. Analogue Gravity), Part I

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Extreme Gravitational Fields

black holes (real data!)	[Event horizon telescope, LIGO, PLANCK]	
 Hawking radiation (black hole evaporation) 		horizon
super-radiance \leftrightarrow rotation of black	ck hole (or cylinder)	ergo-region
quasi-normal modes		horizon
 expanding Universe 		
 cosmological particle creation 		
• horizon crossing \rightarrow freezing \rightarrow set	queezing	horizon
 Gibbons-Hawking effect 		horizon

< 🗆 🕨

Hawking Radiation

1 Hawking

Black Hole Evaporation

Formula for Hawking temperature

$$T_{\text{Hawking}} = \frac{1}{8\pi M} \frac{\hbar c^3}{G_{\text{N}} k_{\text{B}}}$$

Combines four (apparently) different areas of physics

- \hbar quantum theory
- c relativity
- G_N gravity
- $k_{\rm B}$ thermodynamics

Is nature trying to give us a hint?

$$S_{\rm BH} = k_{\rm B} \frac{A}{4\ell_{\rm P}^2} = k_{\rm B} \frac{A}{4\hbar G_{\rm N}/c^3}$$

 \rightarrow black hole entropy \propto area etc.

Black-Hole Heat Engine?

< • • •

Resolution: Quantum Effects

R. Schützhold | Institute of Theoretical Physics | http://www.hzdr.de

< • • •

Page 5/12

Problems & Open Questions

observability

 $M_{\rm BH} = 30 M_{\rm sun} \rightsquigarrow T_{\rm Hawking} \approx 2 {\rm nK} \dots$

- trans-Plankian origin
- interacting fields
- back-reaction (e.g., final stage)
- robustness
- partners & entanglement
- information puzzle
- microscopic origin of S_{BH}
- and many more...

Quasi-Normal Modes

Schwarzschild metric with horizon at r = 2M

$$ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2M}{r}} - r^{2}d\vartheta^{2} - r^{2}\sin^{2}\vartheta \,d\varphi^{2}$$

Separation $\Phi_{\omega,\ell,m}(t, r, \vartheta, \varphi) = \exp\{-i\omega t\}\phi_{\omega,\ell,m}(r)Y_{\ell,m}(\vartheta, \varphi)$

Ordinary 2nd-order differential equation for $\phi_{\omega,\ell,m}(r)$

Resonances with complex ω (analogous for metric perturbations)

4 🗆 🕨

Super-Radiance

Kerr metric with $\Delta = r^2 - 2Mr + a^2$ and $\Sigma = r^2 + a^2 \cos^2 \vartheta$

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma}\right) dt^{2} + \frac{4Mar\sin^{2}\vartheta}{\Sigma} dt d\varphi - \frac{\Sigma}{\Delta} dr^{2} - \Sigma d\vartheta^{2} - \left(r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\vartheta}{\Sigma}\right)\sin^{2}\vartheta d\varphi^{2}$$

Horizons ($\Delta = 0$) at $r_{\pm} = M \pm \sqrt{M^2 - a^2}$ and ergo-region $g_{00} < 0$

Separation $\Phi_{\omega,\ell,m}(t, r, \vartheta, \varphi) = \exp\{-i\omega t + im\varphi\}\phi_{\omega,\ell,m}(r)S_{\omega,\ell,m}(\vartheta)$

Ordinary 2nd-order differential equation for $\phi_{\omega,\ell,m}(r) \rightarrow$ Wronskian

$$1 - \left|\mathcal{R}_{\omega m}\right|^2 = \frac{\omega - m\Omega_{\rm h}}{\omega} \left|\mathcal{T}_{\omega m}\right|^2$$

Amplification for $\omega < m\Omega_{\rm h}$

< 🗆 🕨

Quantum Amplifiers

Amplification of signal $q \rightarrow e^{\xi}q$ as quantum gate?

- phase-sensitive amplifier single-mode squeezing (bosons) $\hat{q} \rightarrow e^{+\xi}\hat{q}$ and $\hat{p} \rightarrow e^{-\xi}\hat{p}$ with $\hat{U} = \exp{\{\xi \hat{a}^2/2 h.c.\}}$
- phase-insensitive amplifier two-mode squeezing (entanglement) $\hat{q} \rightarrow \hat{q} \cosh \xi + \hat{Q} \sinh \xi$ and $\hat{p} \rightarrow \hat{p} \cosh \xi - \hat{P} \sinh \xi$

Send in vacuum state \rightarrow creation of particle pairs (\rightarrow partners)

[Unruh]

4 🗆 🕨

Cosmological Particle Creation

Friedmann-Robertson-Walker metric in 1+1 dimensions

 $ds^2 = a^2(t) \left[dt^2 - dx^2 \right]$

Massive scalar field

$$(\Box + m^2)\Phi = 0 \rightsquigarrow \left(\frac{d^2}{dt^2} + k^2 + a^2(t)m^2\right)\phi_k(t) = 0$$

Harmonic oscillators with time-dependent potentials \rightarrow squeezing

4 🗆 🕨

Horizon Crossing and Freezing

Friedmann-Robertson-Walker metric in 3+1 dimensions (proper time)

$$ds^2 = d\tau^2 - a^2(\tau)d\vec{r}^2$$

Massless scalar field in de Sitter metric with $a(\tau) \propto \exp\{H\tau\}$

$$\Box \Phi = 0 \rightsquigarrow \left(\frac{d^2}{d\tau^2} + 3H\frac{d}{d\tau} + \frac{k^2}{a^2(\tau)}\right)\phi_k(t) = 0$$

Damped harmonic oscillators with decaying spring stiffness

- oscillation (under-damped)
- horizon-crossing (critical)
- freezing (over-damped)
- \rightarrow amplification

Gibbons-Hawking Effect

Friedmann-Robertson-Walker metric in 3+1 dimensions

$$ds^{2} = a^{2}(t) \left[dt^{2} - d\vec{r}^{2} \right] = d\tau^{2} - a^{2}(\tau) d\vec{r}^{2}$$

Electromagnetic field: conformal invariance \rightarrow no particle creation

$$\langle \hat{A}(t,ec{r}) \hat{A}(t',ec{r}')
angle \propto rac{1}{(t-t')^2-(ec{r}-ec{r}')^2}$$

However, particle detector "ticks" with proper time τ

de Sitter metric $a(\tau) \propto \exp\{H\tau\} \rightarrow$ thermal response with temperature

$$T_{\rm GH} = \frac{H}{2\pi}$$

Analogy to Unruh effect...

Gravity Simulators, Part II

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Sonic/Acoustic Analogy

[Unruh, PRL 1981]

Sound waves in flowing fluids (velocity \vec{v} and density ρ)

- ideal fluid without viscosity or friction
- irrotational flow $\vec{v} = \nabla \phi$
- conservative forces \rightarrow potential V
- barotropic equation of state $p = p(\varrho)$

Euler equation \rightarrow Bernoulli equation with specific enthalpy $h(\varrho)$

$$\frac{d\vec{v}}{dt} = \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right) \vec{v} = -\frac{\nabla p}{\varrho} - \nabla V \rightsquigarrow \dot{\phi} + V + \frac{(\nabla \phi)^2}{2} + h(\varrho) = 0$$

Equation of continuity

$$\frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \vec{v}) = 0 \rightsquigarrow \frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \nabla \phi) = 0$$

Linearise...

Sound Waves

Lagrangian with $d\mu/d\varrho = h(\varrho)$

$$\mathcal{L} = -\varrho\left(\dot{\phi} + V + \frac{(\nabla\phi)^2}{2}\right) - \mu(\varrho)$$

Linearise $\rho = \rho_0 + \delta \rho$, $\phi = \phi_0 + \delta \phi \rightsquigarrow \vec{v} = \vec{v}_0 + \delta \vec{v}$ and eliminate $\delta \rho$

$$\delta^{2}\mathcal{A} = \frac{1}{2} \int dt \, d^{D}r \left(\frac{(\delta \dot{\phi} + \vec{v}_{0} \cdot \nabla \delta \phi)^{2}}{\mu''(\varrho_{0})} - \varrho_{0} \, \frac{(\nabla \delta \phi)^{2}}{2} \right) \, ,$$

Painlevé-Gullstrand-Lemaître metric with $c_s^2 = \rho \mu'' = \rho h' = d\rho/d\rho$

$$g_{\mu\nu}^{\text{eff}} = \left(\frac{\varrho_0}{c}\right)^{2/(D-1)} \left(\begin{array}{cc} c^2 - \vec{v}_0^2 & \vec{v}_0\\ \vec{v}_0 & -\mathbf{1} \end{array}\right)$$

Phonons in fluid behave as scalar field in curved space-time!

< • •

Black-Hole Analogues

"The same equations have the same solutions."

$$T_{\text{Hawking}} = \frac{\hbar}{2\pi k_{\text{B}}} \left| \frac{\partial}{\partial r} \left(v - c \right) \right|$$

 \rightarrow trans-Plankian origin?

R. Schützhold | Institute of Theoretical Physics | http://www.hzdr.de

concent

Dispersion Relation

WKB approach: $(\omega + \vec{v}_0 \cdot \vec{k})^2 = f^2(\vec{k}) = c_s^2 \vec{k}^2 + ...$

[Unruh, Jacobson, Corley, RS, Leonhardt, Parentani,...]

Origin of Hawking Radiation

Sub-"Luminal" Case

< • •

Lessons for Hawking Radiation

- trans-Planckian origin resolveduniversality
- robustness (within limits)

 $T_{\text{Hawking}}(\omega) = \frac{v_{\text{group}}(\omega)v_{\text{phase}}(\omega)}{8\pi M}$

more than $\omega^2 \sim k^4$ is problematic

```
[RS+Unruh, PRD (R) 2008]
```

- breakdown of WKB in t, x coordinates
- near-horizon metric with Kruskal coordinate [RS+Unruh, PRD 2013]

 $ds^2 = 2e^{\kappa t} dt dU - e^{2\kappa t} dU^2$

analogy to cosmic expansion \rightarrow tearing apart of waves

Member of the Helmholtz Association

Super-Radiance

Inward radial $v_r < 0$ plus azimut

Ergo-region $\vec{v}^2 > c_s^2$ $\rightarrow g_{00}^{\rm eff} < 0$

Horizon $v_r^2 > c_s^2$

Singularity \sim drain

Phonons may extract rotational energy...

v = c

Also: quasi-normal modes etc.

4 🗆 🕨

Analogue of Cosmic Expansion I

Option I: homogeneously expanding fluid \rightarrow analogue of cosmic horizon

Oscillation \rightarrow horizon crossing \rightarrow freezing \rightarrow squeezing (amplification)

< • •

Analogue of Cosmic Expansion II

Option I: fluid at rest with decaying speed of sound

Oscillation \rightarrow horizon crossing \rightarrow freezing \rightarrow squeezing (amplification) Or combination of both I and II

4 🗆 🕨

Gravity Simulators, Part III

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Bose-Einstein Condensates

[Anglin, Barceló, Busch, Carusotto, Cirac, Coutant, de Nova, Fabbri, Fedichev, Fischer, Finazzi, Garay, Guéry-Odelin,

Jacobson, Jain, Liberati, Macher, Michel, Parentani, Pavloff, Prain, Robertson, Sols, Unruh, Visser, Volovik, Weinfurtner, Zapata, Zoller,...]

Gross-Pitaevskiĭ equation for condensate wave-function

$$\dot{u}\dot{\psi} = \left(-rac{
abla^2}{2m} + V_{\text{ext}} + g|\psi|^2
ight)\psi^2$$

Madelung split $\psi = \sqrt{\varrho} e^{iS} \rightarrow$ Hamilton-Jacobi (Bernoulli) equation

$$\dot{S} + V_{\text{ext}} + g\varrho + \frac{(\nabla S)^2}{2m} = \frac{1}{2m} \frac{\nabla^2 \sqrt{\varrho}}{\sqrt{\varrho}}, \quad \dot{\varrho} + \nabla \cdot (\varrho \vec{v}) = 0$$

Long wavelengths \rightarrow neglect "quantum pressure term"

- low temperatures (\checkmark), super-fluid \rightarrow "no" viscosity/vorticity (\checkmark)
- well understood (\checkmark), controllable (\checkmark), super-"luminal" dispersion
- small size (?), three-body losses (?), measure single phonons (?)
 in situ [RS, PRL 2006] COrrelations [Balbinot, Fabbri, Fagnocchi, Recati, Carusotto]
 time-of-flight [Westbrook]

Quantum Back-Reaction

Naive "calculation" of cosmological constant

$$\langle \hat{T}_{\mu\nu} \rangle \sim g_{\mu\nu} \int d^3k \; rac{|\vec{k}|}{2} \sim g_{\mu\nu} \, k_{\rm cut}^4 \sim g_{\mu\nu} \, \ell_{\rm Planck}^{-4}$$

Analogously for zero-point pressure from quantum Bernoulli equation

$$\dot{S} + V_{\text{ext}} + g\varrho + \frac{(\nabla S)^2}{2m} = 0 \implies p_{\text{zero}} = -\frac{\langle (\nabla \hat{S})^2 \rangle}{2m} \sim k_{\text{cut}}^4$$

But: additional contribution from "quantum pressure term"

Gravity Simulators, Part IV

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Electromagnetic Analogues

[RS+Plunien+Soff, PRL 2002;...]

Electromagnetism in media with constant dielectric permittivity arepsilon

$$\mathcal{L} = -rac{1}{4} \, F_{\mu
u} F^{\mu
u} - rac{arepsilon - 1}{2} \, F_{\mu
u} u^
u F^{\mu\lambda} u_\lambda = -rac{1}{4} \, F_{\mu
u} \, g^{\mu
ho}_{ ext{eff}} \, g^{
u\sigma}_{ ext{eff}} \, F_{
ho\sigma}$$

Gordon metric ightarrow horizon, ergo-region ($g_{00}^{
m eff}=0 \leftrightarrow eta^2=1/arepsilon$)

 $g_{\rm eff}^{\mu\nu} = g_{\rm Minkowski}^{\mu\nu} + (\varepsilon - 1)u^{\mu}u^{\nu} \rightsquigarrow g_{\mu\nu}^{\rm eff} = g_{\mu\nu}^{\rm Minkowski} - \frac{\varepsilon - 1}{\varepsilon} u^{\mu}u^{\nu}$

Problem: speed of light (in medium) is typically too large...

slow light
 [Leonhardt+Piwnicki, PRL 2000]
 [Comment by Visser, Reply]
 [Unruh+RS, PRD 2003]

 moving pulse/front
 [RS+Unruh, PRL 2005;...]

4 🗆 🕨

Optical and Electromagnetic Experiments

Wave-guides & meta-materials [RS+Unruh, PRL 2005]

Dynamical Casimir Effect (quantum!)

[Wilson et al, Nature 2011; Lahteenmaki et al, PNAS 2013]

see also [Tian, Jing, Dragan, Nation, Blencowe, Rimberg, Buks, RS, Unruh,...]

Non-linear (Kerr) media: fibres or bulk

Classical mode conversion (\checkmark) Quantum effects: Hawking radiation (?)

[Belgiorno, Brevik, De Lorenci, Faccio, Jacquet, Koenig, Leonhardt, Liberati, Novello, Philbin, Prain, Thompson,

Unruh, Visser]

Outlook: "photon fluids"

Gravity Simulators, Part V

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Water (Gravity) Waves

Surface waves on ideal flowing liquid with gravity [RS+Unruh, PRD 2002]

- \blacksquare incompressible flow (\checkmark)
- irrotational flow without friction and viscosity (?)
- shallow water waves $\lambda \gg h$
- small (linear) waves $\delta h \ll h$

Generalised Painlevé-Gullstrand-Lemaître metric

$$g_{\rm eff}^{\mu\nu} = \frac{1}{h_0^2} \left(\begin{array}{cc} 1 & v_0^i \\ v_0^j & v_0^j v_0^j - \mathfrak{g}_{\rm eff}^{\perp} g^{ij} \end{array} \right)$$

More flexibility due to possibly curved bottom $ightarrow g^{ij}$

dispersion relation:

deep water \rightarrow sub-"luminal" or surface tension \rightarrow super-"luminal"

- easy to manipulate and measure (\checkmark)
- quantum effects are out of reach
 - \rightarrow super-fluid films (?) [Skyba]

4 🗆 🕨

Water Wave Experiments

[Rousseaux et al, Weinfurtner et al]

- classical mode conversion (stimulated) → "thermal" Bogoliubov coefficients
- rotating black holes: super-radiance
- quasi-normal modes

Gravity Simulators, Part VI

Ralf Schützhold^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf ²Institut für Theoretische Physik, Technische Universität Dresden

9th January 2020

Member of the Helmholtz Association

Ion Trap Analogues

[Alsing, Dowling, Milburn, Cirac, Fey, Schätz, R.S.,...]

Friedmann-Lemaître-Robertson-Walker metric $ds^2 = a^2(t)[dt^2 - dx^2]$

 $(\Box + m^2)\Phi = 0 \quad \rightsquigarrow \quad \ddot{\phi}_k + \left[k^2 + a^2(t)m^2\right]\phi_k = 0$ $\delta\ddot{q}_{1,2} + \omega^2\delta q_{1,2} = \gamma\delta q_{2,1} \quad \rightsquigarrow \quad \delta\ddot{q}_- + \left[\gamma + \omega^2(t)\right]\delta q_- = 0$

scalar field $\Phi(t, x)$ ior Fourier mode ϕ_k row cosmic expansion $a^2(t)$ trainternal dynamics k^2 Cospatial entanglement en

ion motion $\delta q_{1,2}(t)$ rocking mode $\delta q_$ trap potential $\omega^2(t)$ Coulomb interaction γ entangled ions

Increase distance $\gamma\downarrow$ or tighten potential $\omega\uparrow
ightarrow$ tear apart fluctuations

Experiment

[Wittemer, Hakelberg, Kiefer, Schröder, Fey, R.S., Warring, Schaetz, PRL 2019]

 \rightarrow entanglement $E_{\rm F} \approx 0.4$

< 🗆 🕨

DRESDEN

concent

Summary and Outlook

Effects: black (and white) holes and expanding Universe

Analogues: phonons, condensates, photons, water waves, ion traps

Lessons: trans-Planckian origin, robustness, back-reaction

Outlook: fermionic fields

•••

Experiments in Bose-Einstein Condensates

black-hole analogue
 Hawking radiation from density correlations
 quantum nature – entanglement (!?)

 $[{\sf Steinhauer}] \leftrightarrow [{\sf Leonhardt}] \ [{\sf Jacobson}] \ [{\sf Parentani}] \ \dots$

expanding Bose-Einstein condensates

[Eckel, Kumar, Jacobson, Spielman, Campbell, PRX 2018]

creation of phonons with opposite momenta

[Jaskula, Partridge, Bonneau, Lopes, Ruaudel, Boiron, Westbrook, PRL 2012]

changing speed of sound

[Donley, Claussen, Cornish, Roberts, Cornell, Wieman, Nature 2001] signature change \rightarrow "Bose Nova"

[Calzetta, Hu, Weinfurtner, White, Visser,...]

