Direct Searches for Dark Matter with LUX-ZEPLIN

University of O THE UNIVERSITY Imperial College

ondon

University

UNIVERSITY OF

→ Strong incentive for searches to be as broad as possible

Net result: Expected energy spectra

SI WIMP-nucleon, no efficiency applied

New kids on the block...

New kids on the block...

1/12/2019

Science in an

environment

Ratio of S2 to S1 depends on the type of incident particle - allows ER (β , gamma) : NR (neutron, WIMP) discrimination >99.5%

arXiv:1910.09124

arXiv:1910.09124

PMTs

3" Hamamatsu R11410-22

Average QE: 31% (cold); Average Gain: 3.5x10⁶; Top array: 253 units; Bottom array: 241 units

Electrode	Voltage	Diam.	Pitch	Num.
	(kV)	(μm)	(mm)	
Anode	+5.75	100	2.5	1169
Gate	-5.75	75	5.0	583
Cathode	-50.0	100	5.0	579
Bottom	-1.5	75	5.0	565

Cryostats (inner, outer)

Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches

All UK hardware contributions *complete*

https://www.youtube.com/watch?v=dwoFeiqiNe0

Assay campaign

Technique	Isotopic Sensitivity	Typical Sensitivity	Sample Mass	Sampling Duration	Destructive/Non- destructive and Notes	Locations (and Number of Systems if > 1)	${f Samples} \\ {f Assayed}$
HPGe	238 U, 235 U, 232 Th chains, 40 K, 60 Co, 137 Cs any γ -ray emitter	$5 \times 10^{-11} \text{ g/g U},$ 10^{-10} g/g Th	kg	Up to 2 weeks	Non-destructive, very versatile, not as sensitive as other techniques, large samples	SURF ×6, LBNL ×1, U. Alabama ×2, Boulby ×7	926
ICP-MS	238 U, 235 U, 232 Th (top of chain)	$10^{-12}\mathrm{g/g}$	mg to g	Days	Destructive, requires sample digestion, preparation critical	UCL, IBS, BHUC, U. Alabama	157
NAA	238 U, 235 U, 232 Th (top of chain), K	$10^{-12} \text{ g/g to} \\ 10^{-14} \text{ g/g}$	g	Days to weeks	Destructive, useful for non-metals, minimal sample preparation	Irradiated at MITR-II, HPGe assay at U. Alabama	3
GD-MS	238 U, 235 U, 232 Th (top of chain)	$10^{-10}{ m g/g}$	mg to g	Days	Destructive, minimal matrix effects, cannot analyze ceramics and other insulators	National Research Council Canada	2
Radon Emanation	222 Rn	$0.1\mathrm{mBq}$	kg	1 to 3 weeks	Non-destructive, large samples, limited by size of emanation chamber	UCL ×2, U. Maryland, SDSM&T ×2, U. Alabama ×2	175
Surface α	²¹⁰ Pb, ²¹⁰ Bi, ²¹⁰ Po	$120 \ lpha/(m^2 \cdot day)$	g to kg	<1 week	Non-destructive, thin samples, large surface area required	SDSM&T (Si), Brown (XIA), Boulby (XIA), U. Alabama (Si)	306

Sparing you the details!

 \rightarrow Complete understanding of ER and NR rates from known sources over the full relevant energy range

- Cosmics, external, internal, surfaces, β, γ, x, α, n, ν,...
- Includes f.v., LXe skin, OD, water veto
- Further details in <u>backup slides</u>

What this means for WIMPs...

arXiv:1802.06039

Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment

D.S. Akerib,^{1,2} C.W. Akerlof,³ S.K. Alsum,⁴ H.M. Araújo,⁵ M. Arthurs,³ X. Bai,⁶ A.J. Bailey,^{5, a} J. Balajthy,⁷ S. Balashov,⁸ D. Bauer,⁵ J. Belle,⁹ P. Beltrame,¹⁰ T. Benson,⁴ E.P. Bernard,^{11,12} T.P. Biesiadzinski,^{1,2}
K.E. Boast,¹³ B. Boxer,¹⁴ P. Brás,¹⁵ J.H. Buckley,¹⁶ V.V. Bugaev,¹⁶ S. Burdin,¹⁴ J.K. Busenitz,¹⁷ C. Carels,¹³ D.L. Carlsmith,⁴ B. Carlson,¹⁸ M.C. Carmona-Benitez,¹⁹ C. Chan,²⁰ J.J. Cherwinka,⁴ A. Cole,¹² A. Cottle,⁹
W.W. Craddock,¹ A. Currie,^{5, b} J.E. Cutter,²¹ C.E. Dahl,^{22,9} L. de Viveiros,¹⁹ A. Dobi,^{12, c} J.E.Y. Dobson,^{23, d} E. Druszkiewicz,²⁴ T.K. Edberg,⁷ W.R. Edwards,^{12, e} A. Fan,^{1, 2} S. Fayer,⁵ S. Fiorucci,¹² T. Fruth,¹³
R.J. Gaitskell,²⁰ J. Genovesi,⁶ C. Ghag,²³ M.G.D. Gilchriese,¹² M.G.D.van der Grinten,⁸ C.R. Hall,⁷ S. Hans,⁵⁵ K. Hanzel,¹² S.J. Haselschwardt,²⁶ S.A. Hertel,²⁷ S. Hillbrand,²¹ C. Hjemfelt,⁶ M.D. Hoff,¹² J.Y-K. Hor,¹⁷ D.Q. Huang,²⁰ C.M. Ignarra,^{1, 2} W. Ji,^{1, 2} A.C. Kaboth,^{28, 8} K. Kamdin,^{12, 11} J. Keefner,¹⁸ D. Khaitan,²⁴
A. Khazov,⁸ Y.D. Kim,²⁹ C.D. Kocher,²⁰ E.V. Korolkova,³⁰ H. Kraus,¹³ H.J. Krebs,¹ L. Kreczko,³¹ B. Krikler,³¹ V.A. Kudryavtsev,³⁰ S. Kyre,²⁶ J. Lee,²⁹ B.G. Lenardo,²¹ D.S. Leonard,²⁹ K.T. Lesko,¹² C. Levy,³² J. Li,²⁹
J. Liao,²⁰ F.-T. Liao,¹³ J. Lin,^{11,12} A. Lindote,¹⁵ R. Linehan,^{1,2} W.H. Lippincott,⁹ X. Liu,¹⁰ M.I. Lopes,¹⁵ B. López Paredes,⁵ W. Lorenzon,³ S. Luitz,¹ J.M. Lyle,²⁰ P. Majewski,⁸ A. Manalaysay,²¹ R.L. Mannino,³³ C. Maupin,¹⁸ D.N. McKinsey,^{11,12} Y. Meng,¹⁷ E.H. Miller,⁶ J. Mock,^{32,12, f} M.E. Monzani,^{1,2, g} J.A. Morad,²¹ E. Morrison,⁶ B.J. Mount,³⁴ A.St.J. Murphy,¹⁰ H.N. Nelson,²⁶ F. Neves,¹⁵ J. Nikoleyczik,⁴ K. O'Sullivan,^{12,11, h} I. Olcina,⁵ S. Powell,¹⁴ R.M. Preece,⁸ K. Pushkin,³ B.N. Ratcliff,¹ J. Reichenbacher,⁶ C.A. Rhyne,²⁰ A. Richards,⁵ J.P. Rodrigues,¹ D.S. Akerib,^{1,2} C.W. Akerlof,³ S.K. Alsum,⁴ H.M. Araújo,⁵ M. Arthurs,³ X. Bai,⁶ A.J. Bailey,^{5, a} J. Balajthy,⁷ S. Powell, ⁵ R.M. Preece, ⁶ K. Pushkin, ⁶ B.N. Ratcliff, ⁵ J. Reichenbacher, ⁶ C.A. Rhyne, ⁶ A. Richards, ⁷ J.P. Rodrigues, ¹⁵ R. Rosero, ²⁵ P. Rossiter, ³⁰ J.S. Saba, ¹² M. Sarychev, ⁹ R.W. Schnee, ⁶ M. Schubnell, ³ P.R. Scovell, ¹³ S. Shaw, ²⁶ T.A. Shutt, ^{1,2} J.J. Silk, ⁷ C. Silva, ¹⁵ K. Skarpaas, ¹ W. Skulski, ²⁴ M. Solmaz, ²⁶ V.N. Solovov, ¹⁵ P. Sorensen, ¹² I. Stancu, ¹⁷ M.R. Stark, ⁶ T.M. Stiegler, ³³ K. Stifter, ^{1,2} M. Szydagis, ³² W.C. Taylor, ²⁰ R. Taylor, ⁵ D.J. Taylor, ¹⁸ D. Temples, ²² P.A. Terman, ³³ K.J. Thomas, ^{12, i} M. Timalsina, ⁶ W.H. To, ^{1,2} A. Tomás, ⁵ T.E. Tope, ⁹ M. Tripathi, ²¹ C.E. Tull, ¹² L. Tvrznikova, ^{36, 11, 12} U. Utku, ²³ J. Va'vra, ¹ A. Vacheret, ⁵ J.R. Verbus, ^{20, j} E. Voirin, ⁹ W.L. Waldron, ¹² J.R. Watson, ^{11, 12} R.C. Webb, ³³ D.T. White, ²⁶ T.J. Whitis, ^{1, 37} W.J. Wisniewski, ¹ M.S. Witherell, ^{12, 11} F.L.H. Wolfs, ²⁴ D. Woodward, ^{30, k} S.D. Worm, ^{8, 1} M. Yeh, ²⁵ J. Yin, ²⁴ and I. Young⁹ (The LUX-ZEPLIN Collaboration) ¹SLAC National Accelerator Laboratory, Menlo Park, CA 94025-7015, USA ²Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305-4085 USA ³University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI 48109-1040, USA ⁴ University of Wisconsin-Madison, Department of Physics, Madison, WI 53706-1390, USA ⁵ Imperial College London, Physics Department, Blackett Laboratory, London SW7 2AZ, UK

Imperial College London, Physics Department, Blackett Laboratory, London SW7 ZAZ, UK

⁶South Dakota School of Mines and Technology, Rapid City, SD 57701-3901, USA

⁷ University of Maruland, Department of Physics, College Park, MD 20712-1111, USA

 ∞

201

Feb

9

[astro-ph.IM]

039v1

Full simulation of event rates

Simulated dataset inside the fiducial volume for the full LZ exposure (1000 days \times 5600 kg)

ER: electron recoil **NR**: neutron recoil

- ER and NR events discriminated from their different S2/S1 proportion
- ER and NR bands obtained through calibration
- Many γ and n events occur close to the TPC wall
 - Veto them: Xe skin and OD
 - Define a fiducial region:5.6 t for the WIMP search
- o PLR analysis
- o Blinding via salt

WIMP SI Sensitivity

https://arxiv.org/pdf/1802.06039.pdf

 Expected limits on spin-independent cross-sections for 1000 days of live time (left) and discovery potential (right).

SD interactions, axions, axion-like particles (ALPs), sub-GeV dark matter, leptophillic axial vector DM, astrophysical neutrinos, $0\nu\beta\beta$'s, EFT analyses...

SD WIMP-neutron (left) and WIMP-proton (right) scattering for a 1000 live day run with a 5.6 tonne fiducial mass.

https://arxiv.org/pdf/1802.06039.pdf

SD interactions, **axions, axion-like particles (ALPs)**, sub-GeV dark matter, leptophillic axial vector DM, astrophysical neutrinos, $0\nu\beta\beta$'s, EFT analyses...

Solar QCD axions (left) and galactic axion-like particle (right) sensitivities for a 1000 live day run with a 5.6 tonne fiducial mass

https://arxiv.org/abs/1703.09144

SD interactions, axions, axion-like particles (ALPs), **sub-GeV dark matter**, leptophillic axial vector DM, astrophysical neutrinos, $0\nu\beta\beta$'s, EFT analyses...

Migdal effect

Matthew J. Dolan, Felix Kahlhoefer, and Christopher McCabe Phys. Rev. Lett. **121**, 101801

- χ -n scatter leads to <u>additional</u> ER signal
- ER quenching is << NR quenching
- Even if NR signal is below threshold, ER may still be visible
- Extends low mass sensitivity
- Note: The reality of the Migdal effect is yet to be confirmed!

SD interactions, axions, axion-like particles (ALPs), **sub-GeV dark matter**, leptophillic axial vector DM, astrophysical neutrinos, $0\nu\beta\beta$'s, EFT analyses...

Migdal effect

In the context of this meeting...

Updating the SHM

What is the impact on direct detection (with LZ)?

Necib et al. ApJ 874 (2019)

Looking *beyond* LZ...

XENON FUTURES:

R&D FOR A GLOBAL RARE EVENT OBSERVATORY

"Generation 3" dark matter

A ~50 ton LXe rare event observatory

- Expect to be operating by ~2030
- Broad science remit

Requires R&D <u>now.</u> UK Objectives:

- Direct observation of Migdal effect
- Enhanced liquid xenon technology & readout
- Cryogenic low background electronics
- Advanced radiopurity control techniques
- Design studies for a G3 experiment

'Phase 1' (18mo) just approved by STFC 'Phase 2' (24 mo) under evaluation.

STFC Opportunities Call 2019

Lead: Tim Sumner, Imperial College

Feasibility Study for Developing the Boulby Underground Laboratory into a Facility for Future Major International Projects

 Typical experiment requirements and expectations of facility support
 Use cases for 50-500 tonnes liquid targets for Dark Matter and 1000kg solid targets for 0vBB derived from existing experiments/proposals

- Consultation with wider community
- Recommendation for future developments with timescales and costs

In parallel...

To summarise...

Great Progress

EDL

To summarise...

Great Progress Still lots to do

To summarise...

Great Progress Still lots to do **Roll on 2020!**

The LUX-ZEPLIN Collaboration

- ♦ Black Hills State University
- ♦ Brandeis University
- Brookhaven National Laboratory
- ♦ Brown University
- Center for Underground Physics, Korea
- ♦ Fermi National Accelerator Laboratory
- ♦ Imperial College London
- ♦ LIP Coimbra, Portugal
- ♦ Lawrence Berkley National Laboratory
- ♦ Lawrence Livermore National Laboratory
- ♦ MEPhl-Moscow, Russia
- ♦ Northwestern University
- ♦ Pennsylvania State University
- ♦ Royal Holloway, University of London
- SLAC National Accelerator Laboratory
- South Dakota School of Mines and Technology
- ♦ South Dakota Science and Technology Authority
- ♦ STFC Rutherford Appleton Laboratory
- ♦ Texas A&M University
- ♦ University at Albany, SUNY
- ♦ University College London
- ♦ University of Alabama
- ♦ University of Bristol
- Oniversity of California, Berkeley
- ♦ University of California, Davis

- ♦ University of California, Santa Barbara
- ♦ University of Edinburgh
- ♦ University of Liverpool
- ♦ University of Maryland
- \diamond University of Michigan
- University of Massachusetts
- ♦ University of Oxford
- ♦ University of Rochester
- ♦ University of Sheffield
- ♦ University of South Dakota
- ♦ University of Wisconsin Madison
- ♦ Washington University in St. Louis
- ♦ Yale University

Back up slides

Projected discovery significance

- > 3.8×10⁻⁴⁸ cm² @40 GeV/c² (3σ)
- ► 6.7×10⁻⁴⁸ cm² @40 GeV/c² (5σ)

Getting ready to characterise WIMP signals from the very start:

WIMP search: present and future

Detector parameters

Detector Parameter			
Photon Detection Efficiency (PDE)			
PDE in liquid (g_1) [phd/ph]	0.119		
PDE in gas $(g_{1,gas})$ [phd/ph]	0.102		
Single electron size [phd]	83		
Effective charge gain (g_2) [phd/e]	79		
PTFE-LXe reflectivity	0.977		
LXe photon absorption length [m]			
PMT efficiency at 175 nm			
Other Key Parameters			
Single phe trigger efficiency	0.95		
Single phe relative width (Gaussian)			
S1 coincidence level	3-fold		
S2 electron extraction efficiency			
Drift field $[V cm^{-1}]$	310		
Electron lifetime [µs]	850		

T

Background Single Scatter ER events

- Energy spectra of electron recoil background from various sources.
- ²²²Rn dominates at low energies.
- Environmental background and components are not major sources of background events.

"...remembering that we have a skin region, outer detector and water

tank for background suppression"

Background Single Scatter NR events

 Single scatter nuclear recoil events in the LXe active volume before (left) and after (right) rejecting events in coincidence with veto system (LXe skin and the Outer Detector (OD).

Background Single Scatter NR events

- Single scatter NR before (left) and after (right) skin and OD coincidence rejection
- Rate at low energy (<4 keV) dominated by ⁸B CNNS

- 5.6 tonnes
- 1000 days
- 1.5 to 6.5 keV

Background Source		NR
		(cts)
Detector Components	9	0.07
Surface Contamination	40	0.39
Laboratory and Cosmogenics	5	0.06
Xenon Contaminants	819	0
222Rn	681	0
220Rn	111	0
natKr (0.015 ppt g/g)	24	0
natAr (0.45 ppb g/g)	3	0
Physics	322	0.51
136Xe 2vββ	67	0
Solar neutrinos (pp+7Be+13N)	255	0
Diffuse supernova neutrinos	0	0.05
Atmospheric neutrinos	0	0.46
Total	1195	1.03
with 99.5% ER discrim., 50% NR eff.	5.97	0.51

	Background Source	ER	NR
• 5.6 tonnes			(cts)
• 1000 days	Detector Components	9	0.07
Tooo days	Surface Contamination	40	0.39
• 1.5 to 6.5 keV	Laboratory and Cosmogenics	5	0.06
	Xenon Contaminants	819	0
Radon dominates	222Rn	681	0
ER backgrounds	220Rn	111	0
	natKr (0.015 ppt g/g)	24	0
Enth	natAr (0.45 ppb g/g)	3	0
Neutrinos	Physics	322	0.51
(atomic electron	136Xe 2vββ	67	0
recoils)	Solar neutrinos (pp+7Be+13N)	255	0
)	Diffuse supernova neutrinos	0	0.05
	Atmospheric neutrinos	0	0.46
	Total	1195	1.03
	with 99.5% ER discrim., 50% NR eff.	5.97	0.51

	Background Source	ER	NR
• 5.6 tonnes			(cts)
• 1000 days	Detector Components	9	0.07
Toolo days	Surface Contamination		0.39
• 1.5 to 6.5 keV	Laboratory and Cosmogenics		0.06
	Xenen Contaminants	819	0
Neutrons,	222Rn	681	0
including alpha-n	220Rn	111	0
on PTFE	natKr (0.015 ppt g/g)	24	0
EDI	natAr (0.45 ppb g/g)	3	0
	Physics	322	0.51
Cabarant	136Xe 2vββ	67	0
Conerent	Solar neutrinos (pp+7Be+13N)	255	0
scattering of	Diffuse supernova neutrinos	0	0.05
atmospheric	Atmospheric neutrinos	0	▶ 0.46
v's on Xe	Total	1195	1.03
nuclei	with 99.5% ER discrim., 50% NR eff.	5.97	0.51

• 5.6 tonnes	Background Source	ER (cts)	NR (cts)
• 1000 days	Detector Components		0.07
rooo days	Surface Contamination		0.39
• 1.5 to 6.5 keV	Laboratory and Cosmogenics	5	0.06
	Xenon Contaminants	819	0
Simple WIMP search box "Cut & Count" type numbers	222Rn 220Rn natKr (0.015 ppt g/g) natAr (0.45 ppb g/g)	681 111 24 3	0 0 0 0
	Physics	322	0.51
	136Xe 2vββ Solar neutrinos (pp+7Be+13N) Diffuse supernova neutrinos Atmospheric neutrinos	67 255 0 0	0 0 0.05 0.46
	Total	1195	1.03
	with 99.5% ER discrim., 50% NR eff.	5.97	0.51