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Historical context



Gauss: Statistics, Optimisation and Astronomy

Gauss, Statistics, and Gaussian Elimination

G. W. STEWART"

‘Gaussian elimination is the algorithm of choice for the solution of dense lincar
systems of equations. However, Gauss himself originally introduced his elimination pro-
edure as a way of determining the precision of least squares estimates and only later
described the computational algorithm. This article tels the story of Gauss, his algorithm,
and its relation to his probabilistic development of least squares.
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1. INTRODUCTION

Everyone knows that Gauss invented Gaussian elimination, and for practical pur-
poses everyone is right. What is less well known is that Gauss introduced the procedure
as a mathematical t0ol to get at the precision of least squares estimates. In fact, the
computational component in his original description s so litle visible that it takes some
doing to see an algorithm in it.

aussian elimination, therefore, was not conceived as  general numerical algorithm
with applications in statistics and least squares. Rather it was a procedure that sprang
from the interface of statistics and computation. Because the full story is known only to
the few who have consulted the original sources, 1 hope my readers will be interested
10 see how Gauss did things. But there is more than the satisfaction of idle curiosity
here. Gauss and Laplace were the premier statisticians of their day, and Gauss alone was
the premier numerical analyst. Today we still have something to leam from observing
Gauss's practices.

2. CHRONICLES

‘The principle of least squares arose from the problem of combining sets of overde-
termined equations to form a square system that could be solved for the unknowns. The
problem went under the name of the combination of observations, and has been well
surveyed by Sigler (1986) in his History of Sarsics. By way of background, 1 will
relate in chronological order the major events in the story of least squares, from Gaus
first discovery o his final treatment in the 1820s.
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Gauss: Statistics, Optimisation and Astronomy

Although we tend to regard Gauss chiefly as a mathematician, it was as an astronomer
that he first made his mark. On New Year’s Day of 1801, the astronomer Piazzi discovered
the asteroid Ceres. The new planet became unobservable after only nine degrees of an
arc had been recorded, and astronomers were faced with problem of determining where
to look for it next. Gauss undertook the calculation, using new techniques in physical
astronomy and presumably his principle of least squares. At the end of 1801 he predicted
where in the heavens the asteroid would be found, and his reputation was made.

Source: Margaret Wright, Courant Institute



Mathematical Optimisation

(Mathematical) Optimisation problem

minimize fy(x) (1)
subject to fi(x) < bj, i=1,...,m 2)
@ x = (xy,...,X,): optimisation variables.

e f,: R" — R: objective function.

o f;:R" - R,i=1,..., m: constraint functions.

optimal solution x* has smallest value of f; among all vectors that
satisfy the constraints.



Solving optimisation problems

General optimisation problem

@ Very difficult to solve.
@ Methods involve some compromise, e.g., very long computation time
or not always finding a solution.

Exceptions

@ Least-squares problems.
@ Linear programming problems.

@ Convex optimisation problems.



Mathematical Optimisation

The great watershed in optimisation isn’t between
linearity and nonlinearity, but convexity and
noncovexity.

Rockafellar, 1993

Broadly speaking, optimisation problems involving convex functions tend
to be nice:

@ Any minimiser is the unique global minimiser;

@ Convex optimisation problems can often be solved rapidly;

@ Theoretical guarantees of convergence.
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Quant funds can be divided into two
groups: thoselike Stockfish, which use ma- —
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Figure 1: Source: March of the machines, The Economist 05/10/2019



Taking the original Fisherian point of view, significance test-
ing is an effort to address the selection of an interesting find-
ing regarding a single parameter from the background noise.
Modern science faces the problem of selection of promising
findings from the noisy estimates of many.

Y. Benjamini and Y. Hechtlinger, Biostatistics (2014) 15, 13-16
N
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Norms and /, norms

Examples of norms on the vector space R” are the so-called I, norms, defined as

n 1/p
[Ix]l, :== <Z |Xk|p) , 1< p<oo. (3)
k=1

@ For p = 2 we obtain the standard Euclidean length

D2 (4)
k=1

@ For p = 1 we obtain the sum-of-absolute-values length

lxlly =

n

lxlly = Ixl- (5)

k=1




Linear systems in a nutshell

Solving y=AzeR™ A e R™*"

Determined (m = n): z=A"1y A ><

Over-determined (m >n):  min |Az — y|?
o =| A least squares
z=(ATA)TIATy = Ay xH

Under-determined (m < n): min {lz| ; Az =y} least norm
I
z=AT(AAT) Ly < A%y wx problem
A ill-posed and/or noise:  min |Az — y|2 + A|z|? I
= (ATA + )\Id")_lATy =ty Aty XEI modified from Gabriel Peyré

= AT(AAT + M\dm) "'y (Woodbury identity)
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Least squares problem

Least squares problem: choose x to minimise f(x) = |Ax — b||§
where A € R™*" with m > n, and b € R™ are problem data.

m X n matrix A is tall, so Ax = b is over-determined.

For most choices of b, there is no x that satisfies Ax = b.
Residual: r = Ax — b.

Idea: make residual as small as possible, if not 0.

Assume that the columns of A are independent (the Gram matrix

AT A is invertible), the least-squares approximation problem has the
unique solution:

[ x=(ATA) AT b. (6)}
@ Compare with the solution of the square invertible system Ax = b:

x=A"1h (7)

11



Example: Penalty function approximation

minimise  ¢(rn) + -+ &(rm)
subjectto r=Ax—b

(8)

Histogram of residuals for the /; and  penalty functions (m = 100, n =
30):
¢(u) = |ul, d(u) = v (9)

12



Regularised approximation

how well the data agrees with the model Ax=b

1
minimise  (||Ax — b||, ||x]) (10)
| I—

how large are your model parameters

@ Ac R™ " is a matrix of n predictors;
@ x € R" are the parameters;

@ b€ R™ is a vector of responses.

Idea:

@ We want a good fit of Ax = b, but we want to do it efficiently,
i.e., with small ||x

, so we add to the objective a term that penalises
large x.

@ Regularisation avoids large x.

13



Regularised approximation

[ minimise  ||Ax — b|| + X ||x|| (11) j

@ Standardise A, so that each column has zero mean and unit variance.
@ Solution for A > 0 traces out optimal trade-off curve (sweep A from 0 to o).

@ Convex problem, so we know how to solve it.

Ridge regression

[ minimise  [|Ax — b||2 4+ X ||x||3 (12) j

Squared objective makes problem smooth (second-derivative exists) and we have an
analytical solution.

Can be solved as a least squares problem with the analytical solution:

x=(ATA+AI)"tATb. (13)
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The Lasso

Lasso (least absolute shrinkage and selection operator)

[ minimise || Ax — b||3 + X [|x| (14) }

@ Statistical procedure that solves the ordinary least squares problem
penalised with an /; norm (it promotes sparsity).

If A =0 you get the least squares solution.

if A =00 you get x =0.

The Lasso tries to fit a model by selecting variables:

e Start at A = oo, where you find no variables;
e As you decrease A the Lasso will include more and more variables,
one at a time.

Convex problem, so we know how to solve it efficiently.

15



The Lasso

[ minimise || Ax — b||3 + X [|x| (15) }

Can also be written as:

n int’eﬁ‘ept p 2 p
S yi=B=D Bixi | 218l (16)
i=1 Jj=1 Jj=1

Residual Sum of Squares
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EV charging




ELAAD dataset

ElaadNL: Dutch research organisation involved in the development
and deployment of EV charging technologies.

1,747 georeferenced charging stations.

54,000 users, each identified by a unique id.

1,060, 763 charging events.

Data collected between January 2012 and March 2016.

17



ELAAD: spatial data
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Figure 2: Public charging stations in the ElaadNL data set in 2015 (triangles) shown together with the Charging stations 2015 dataset
(crosses). In the year 2015, 17 786 publicly available connectors for slow charging were operational in the NL. We identified 8 400 unique

positions of charging stations, i.e. considering the distribution of connectors at charging stations observed in the ElaadL dataset, this data

covers 78.3% of all stations. In panel (B), we estimated the spatial representativeness of the ElaadNL data sets by calculating the ratio

between the number of station in ELaadNL and in Charging stations 2015 located in squared cells of a regular grid. In the largest cities, 18
Amsterdam and Rotterdam, the data contains a small percentage of all charging stations.



Predictors: GIS data

o Vector data
o Polygon data

population cores,
neighbourhoods data,
energy atlas,

liveability,
@ land use and land cover (urban atlas, CBS land cover).
o Polyline data
o traffic flow data.
o Point data
@ OSM amenities,
o OpenChargeMap.
o Raster data

e LandScan - ambient population.

19



Vector polygon data: Population cores (2168 cores)

Figure 3: Population cores are continuous spatial units with at least 25 homes or 50 inhabitants
(102 predictors). Source: Statistics Netherlands https://opendata.cbs.nl/

20



Polygon data: Population cores (2168 cores)

number of persons in private household,

number of persons in private households, 0 to 15 years,
number of persons in private households, 15 to 25 years,
number of persons in private households 25 to 45 years,
number of persons in private households, 45 to 65 years,
number of persons in private households 65 years or older,
number of persons in one-person households,

number of people in multi-person household with children,
number of people in multi-person household without children,
nercentage of working population, 15-24 years old,
number of households of two persons,

number of households of three persons,

the number of residential units,

21



Coefficients
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CV Mean-Squared Error
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Number of predictors
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log(Lambda)
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Lasso fit

@ Lasso does variable selection on 240 predictors.

@ At the optimal A, we reduce the number of predictors to 79 (about
1/3 of the original predictors).

e R? =0.362 at optimum value (R?(adjusted) = 0.316).

@ The A, is the one which minimises the cross-validation error. The
A1o is the X value within 1 standard error of \,j,.

Coefficient Meaning

-27.8627 The percentage of working population working in Mining, Manufacturing and Construction.

20.3313 The percentage of working population employed in commercial services

18.169 The percentage working population engaged in agriculture, forestry and fisheries, industry, commercial and non-commercial services
-0.1884 The percentage of the number of multi-person households without children

4.1384 Number of business Services

14.5717 Property unknown (no link between the addresses of the Key Registers Addresses and the housing register Cadaster).

57.8468 Average income per inhabitant

-0.9093 Average distance of all residents in an area to the nearest shops for groceries.

24



Data-driven discovery of
dynamical systems




Data-driven discovery of dynamical systems

Goal of computationally-oriented scientists:

Inferring a (typically nonlinear) model from observations that both correctly iden-
tifies the underlying dynamics and generalises qualitatively and quantitatively to
unmeasured parts of the phase, parameter, or application space.

@ ODE or PDE system described by
parameter

ur = N(u, x, t; 1) (18)
@ Our objective is to discover N(.) given only time-series measurements of the
system.

@ A key assumption (prior) is that the true N(.) is comprised of only a few terms,
making the model sparse in the space of all possible combinations of functions.

@ For example, Burgers' equation
N = —uuy + pus (19)
and the harmonic oscillator
N = —ipx?u — ihithe /2 (20)

each have only two terms. 25



Identifying Dynamical Systems
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Discovering governing equations from data by sparse
identification of nonlinear dynamical systems
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Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine leaming with nonlinear dynamical systems to discover
from noisy data. The only as-
sumption about the structure of the model is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regresslon to determine the fewest terms in the dynamic
tions required to represent the data. This
results in parsimonious models that balance accuracy with model
ity to avoid We the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear tors and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11-13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)

In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14-16) and
compressed sensing (17-22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23-30).
Here, we consider dynamical systems (31) of the form

4w =10x00). m

The vector x(r) € R" denotes the state of a system at time 7, and
the function f(x(r)) represents the dynamic constraints that de-

26



Data-driven discovery of dynamical systems: method

Method:

o Construct a library ©(U) of candidate linear, nonlinear, and partial
derivative terms for the right-hand side.

@ Each column of ©(U) contains the values of a candidate term
evaluated using the collected data.

@ In this library, one can write the dynamics as

U, = O(U)¢ (21)

where

e U is a vector of time derivatives of the measurement data.

e £ is a sparse vector, with each nonzero entry corresponding to a

functional term to be included in the dynamics.
@ Finding the sparsest vector £ consistent with the measurement data

is now feasible with advanced methods in sparse regression, which
makes it possible to find the most parsimonious model while
circumventing a combinatorial search. 27



Identifying the Lorenz Equations
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Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X

and derivatives X; the assumption of having X is relaxed later. Next, a library of nonlinear functions of the states, ®(X), is constructed. This nonlinear feature

library is used to find the fewest terms needed to satisfy X =@(X)E. The few entries in the vectors of Z, solved for by sparse regression, denote the relevant

terms in the right-hand side of the dynamics. Parameter values are o= 10, #=8/3, p=28, (X, Y0, 20)” =(~8,7,27)". The trajectory on the Lorenz attractor is 28
colored by the adaptive time step required, with red indicating a smaller time step.



Knockoffs




Most published research findings are probably false [loannidis]

Figure 6: 1000 hypotheses to test.

credit: Emmanuel Candes (Stanford), The Economist (19/10/2013)
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Most published research findings are probably false [loannidis]

Figure 7: 1000 hypotheses, 100 potential discoveries.
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Most published research findings are probably false [loannidis]

Figure 8: Out of these 1000 hypotheses, 100 hypotheses are potential discoveries (in yellow), but
900 are null (the white squares).

31



Most published research findings are probably false [loannidis]
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@ Powerx80% —> true positivesx 80
(I have 80% chance to declare potential discoveries [green and yellow squares] as
positive [green squares])

@ False positives (5% level)~ 45 3
(1 detect 5% of the 900 that are completely irrelevant [red squares])



Most published research findings are probably false [loannidis]

m True positives False negatives m False positives
::j e u
- S
. |
mm L ivTiJ "
m Reported
. . 2

@ When reporting, | don't know which are true positives or false positives, so | just
report the positives.

@ Observe that a large fraction of reported discoveries is false.

@ In this example, over 1 in 3 hypotheses are null and thus cannot be replicated.
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Most published research findings are probably false [loannidis]

= True positives False negatives m False positives

W | A

. ﬂ . u .

R EEeeEeEcaenenEe:

; " n = Reported
i i
O

Now suppose that we drop the power from 80% to 30%: Power~ 30%.
| still have on average 45 nulls [red squares].

But the number of true discoveries dropped: | now have 30 instead of 80.

False discover proportion:
45

T 30145
@ Most of what I'm reporting is false!

FDP =60%
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Small, low-powered studies are endemic in neuroscience
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Figure 3 | Median power of studies included in
neuroscience meta-analyses. The figure shows a
histogram of median study power calculated for each of
the =49 meta-analyses included in ouranalysis, with the
number of meta-analyses (N) on the left axis and percent
of meta-analyses (%) on the right axis. There is a clear I
bimodal distribution; n=15 (31%) of the meta-analyses

comprised studies with median power of less than 11%, ANALYSIS
whereas n=7 (14%) comprised studies with high average

power in excess of 90%. Despite this bimodality, most Power failure: why small sample
size undermines the reliability of

meta-analyses comprised studies with low statistical neuroscience
power: n=28 (57%) had median study power of less than Foreres B "
31%. The meta-analyses (n=7) that comprised studies
with high average powerin excess of 90% had their
broadly neurological subject matter in common.

Figure 9: Button et al., Nature Neuroscience, vol 14, 365 (2013) .



False discovery rate (FDR) [Benjamini-Hochberg]

[ Selection problem: How do we find true associations out of a sea of possibilities? ]

Reported
@ Hji,..., H, hypotheses to be tested
FDR =k # false: discoYeries i # red squares
# discoveries # green+# red squares
0
= =0,
0

@ FDR is the fraction of irreproducibility.
@ Benjamini and Hochberg ('95) proposed a simple algorithm to control the FDR,
i.e., to control the reliability of the model.
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The Knockoff filter

Why does the Lasso make errors?

@ Feature correlated with noise.
@ Feature correlated with a signal not included in the model.

Problem: How do we control the FDR of selected features {i - B; # 0}?
Knockoffs:

@ For each feature Xj, create a fake variable X; (knockoff).
e Xjand )N(J are equally likely to be selected (when not in the model):
e The covariance between knockoff features is the same as the
covariance between the two original features.

X/ X = X/ X forall j, k (22)
o Knockoffs have the same covariance with a true feature that the two

original true features have with each other.

X/ X =X/ X forall j # k (23)
37



The Knockoff filter

Lasso:
mtercept

P
Yi — 50 - Z 5JXU +A Z |ﬂj| (24)
j=1

3

i=1

Residual Sum of Squares

Number of predictors
115 144

Coeflicients

-40000
L
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The Knockoff filter

@ Lasso selects say, 52 original features and 26 knockoff features <
probably &~ 26 false positives among the 52 original features.

@ Continue along the Lasso path until the ratio between the knockoffs
and the original features is below the target FDR —then stop.

@ Report only the original features you have found.

o With this method, we can guarantee replicability.
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Summary

fitting problems;

@ Scientists have been fitting data since the 19th century;

Variable selection methods, such as the Lasso, are a fresh take on

The knockoffs framework allows us to fit reliably;

Need for automation in science and engineering.

IIL Identified System
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