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Gauss: Statistics, Optimisation and Astronomy
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Gauss: Statistics, Optimisation and Astronomy

Source: Margaret Wright, Courant Institute
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Mathematical Optimisation

(Mathematical) Optimisation problem

minimize f0(x) (1)

subject to fi (x) ≤ bi , i = 1, . . . ,m (2)

x = (x1, . . . , xn): optimisation variables.

fo : Rn → R: objective function.

fi : Rn → R, i = 1, . . . ,m: constraint functions.

optimal solution x∗ has smallest value of f0 among all vectors that

satisfy the constraints.
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Solving optimisation problems

General optimisation problem

Very difficult to solve.

Methods involve some compromise, e.g., very long computation time

or not always finding a solution.

Exceptions

Least-squares problems.

Linear programming problems.

Convex optimisation problems.
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Mathematical Optimisation

The great watershed in optimisation isn’t between

linearity and nonlinearity, but convexity and

noncovexity.

Rockafellar, 1993

Broadly speaking, optimisation problems involving convex functions tend

to be nice:

Any minimiser is the unique global minimiser;

Convex optimisation problems can often be solved rapidly;

Theoretical guarantees of convergence.
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20 Briefing Automatic investing The Economist October 5th 2019

2 machine programmed with human tactics.
Intriguingly, AlphaZero made what looked
like blunders to human eyes. For example,
in the middlegame it sacrificed a bishop for
a strategic advantage that became clear
only much later. 

Quant funds can be divided into two
groups: those like Stockfish, which use ma-
chines to mimic human strategies; and
those like AlphaZero, which create strat-
egies themselves. For 30 years quantitative
investing started with a hypothesis, says a
quant investor. Investors would test it
against historical data and make a judg-
ment as to whether it would continue to be
useful. Now the order has been reversed.
“We start with the data and look for a hy-
pothesis,” he says. 

Humans are not out of the picture en-
tirely. Their role is to pick and choose
which data to feed into the machine. “You
have to tell the algorithm what data to look
at,” says the same investor. “If you apply a
machine-learning algorithm to too large a
dataset often it tends to revert to a very sim-
ple strategy, like momentum.” 

But just as AlphaZero found strategies
that looked distinctly inhuman, Mr Jacobs
of Lazard says ai-driven algorithmic in-
vesting often identifies factors that hu-
mans have not. The human minders may
seek to understand what the machine has
spotted to find new “explainable” factors.
Such new factors will eventually join the
current ones. But for a time they will give
an advantage to those who hold them. 

Many are cautious. Bryan Kelly of Yale
University, who is aqr’s head of machine
learning, says its fund has found purely
machine-derived factors that appeared to
outperform for a while. “But in the end they
turned out to be spurious.” He says com-
bining machine learning with economic
theory works better. 

Others are outright sceptics—among
them Mr Dalio. In chess, he points out, the

rules stay the same. Markets, by contrast,
evolve, not least because people learn, and
what they learn becomes incorporated in
prices. “If somebody discovers what you’ve
discovered, not only is it worthless, but it
becomes over-discounted, and it will pro-
duce losses. There is no guarantee that
strategies that worked before will work
again,” he says. A machine-learning strat-
egy that does not employ human logic is
“bound to blow up eventually if it’s not ac-
companied by deep understanding.”

Nor are the available data as useful as
might initially be thought. Traditional
hedge-fund managers now analyse all
sorts of data to inform their stockpicking
decisions: from credit-card records to sat-
ellite images of inventories to flight char-
ters for private jets. But this proliferation of
data does not necessarily allow machines
to take over the central job of discovering
new investment factors. 

The reason is that by the standards of ai

applications the relevant datasets are tiny.
“What determines the amount of data that
you really have to work from is the size of
the thing that you’re trying to forecast,”
says Mr Kelly. For investors in the stock-
market that might be monthly returns, for
which there are several decades’ worth of
data—just a few hundred data-points. That
is nothing compared with the gigabytes of
data used to train algorithms to recognise
faces or drive cars. 

An oft-heard complaint about mach-
ine-driven investing takes quite the oppo-
site tack. It is not a swizz, say these critics—
far from it. It is terrifying. One fear is that
these algorithms might prompt more fre-
quent and sudden shocks to share prices.
Of particular concern are “flash crashes”. In
2010 more than 5% was wiped off the value

of the s&p 500 in a matter of minutes. In
2014 bond prices rallied sharply by more
than 5%, again in a matter of minutes. In
both cases markets had mostly normalised
by the end of the day, but the shallowness
of liquidity provided by high-frequency
traders was blamed by the regulators as
possibly exacerbating the moves. Anxieties
that the machine takeover has made mar-
kets unmanageably volatile reached a fren-
zy last December, as prices plummeted on
little news, and during the summer as they
gyrated wildly. 

In 1987 so-called program trading,
which sold stocks during a market dip,
contributed to the Black Monday rout,
when the Dow Jones index fell by 22% in a
single day. But the problem then was “herd-
ing”—money managers clustering around
a single strategy. Today greater variety ex-
ists, with different investment funds using
varying data sources, time horizons and
strategies. Algorithmic trading has been
made a scapegoat, argues Michael Mendel-
son of aqr. “When markets fall, investors
have to explain that loss. And when they
don’t understand, they blame a computer.”
Machines might even calm markets, he
thinks. “Computers do not panic.” 

Money never sleeps
Another gripe is that traditional asset man-
agers can no longer compete. “Public mar-
kets are becoming winner-takes-all,” com-
plains one of the world’s largest asset
managers. “I don’t think we can even come
close to competing in this game,” he says.
Philippe Jabre, who launched his hotly an-
ticipated eponymous fund, Jabre Capital,
in 2007, said that computerised models
had “imperceptibly replaced” traditional
actors in his final letter to clients as he
closed some funds last December.

And there remains a genuine fear: what
happens if quant funds fulfil the promises
of their wildest boosters? Stockmarkets are
central to modern economies. They match
companies in need of cash with investors,
and signal how well companies are doing.
How they operate has big implications for
financial stability and corporate gover-
nance. It is therefore significant that algo-
rithms untethered from human decision-
making are starting to call the shots. 

The prospect of gaining an edge from
machine-derived factors will entice other
money managers to pile in. It is natural to
be fearful of the consequences, for it is a
leap into the unknown. But the more accu-
rate and efficient markets are, the better
both investors and companies are served.
If history is a guide, any new trading advan-
tage will first benefit just a few. But the
market is relentless. The source of that ad-
vantage will become public, and copied.
And something new will be understood,
not just about the stockmarket, but about
the world that it reflects. 7

3Vision of the future

Sources: Russell 3000; Federal Reserve;
Bloomberg; Morningstar; ETF.com;
HFR; Preqin; JPMorgan Chase

*Estimate
†Government,

insurance, foreigners

United States, public equity assets
Latest available, % of total public equities (worth $31trn)

Mutual fund Index 7.7

ETF Index 7.4
Institutional Index* 14.7

Smart ETFs 2.9
Quant funds 2.4

Mutual funds 13.9

Other hedge funds 2.4
Other institutions* 8.0

Held by
companies 15.3
Others† 25.3

Other owners
40.6%

Managed funds
Human
24.3%

Managed funds
Automated
35.1%

Figure 1: Source: March of the machines, The Economist 05/10/2019
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Taking the original Fisherian point of view, significance test-

ing is an effort to address the selection of an interesting find-

ing regarding a single parameter from the background noise.

Modern science faces the problem of selection of promising

findings from the noisy estimates of many.

Y. Benjamini and Y. Hechtlinger, Biostatistics (2014) 15, 13-16
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Norms and lp norms

Examples of norms on the vector space Rn are the so-called lp norms, defined as

‖x‖p :=

(
n∑

k=1

|xk |p
)1/p

, 1 ≤ p <∞. (3)

For p = 2 we obtain the standard Euclidean length

‖x‖2 :=

√√√√ n∑
k=1

x2
k , (4)

For p = 1 we obtain the sum-of-absolute-values length

‖x‖1 :=
n∑

k=1

|xk |. (5)
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Linear systems in a nutshell
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Least squares problem

Least squares problem: choose x to minimise f (x) = ‖Ax − b‖2
2

where A ∈ Rm×n with m ≥ n, and b ∈ Rm are problem data.

m × n matrix A is tall, so Ax = b is over-determined.

For most choices of b, there is no x that satisfies Ax = b.

Residual: r = Ax − b.

Idea: make residual as small as possible, if not 0.

Assume that the columns of A are independent (the Gram matrix

ATA is invertible), the least-squares approximation problem has the

unique solution:

x = (ATA)−1ATb. (6)

Compare with the solution of the square invertible system Ax = b:

x = A−1b (7)
11
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Example: Penalty function approximation

minimise φ(r1) + · · ·+ φ(rm)

subject to r = Ax − b
(8)

Histogram of residuals for the l1 and l2 penalty functions (m = 100, n =

30):

φ(u) = |u|, φ(u) = u2 (9)

12
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Regularised approximation

minimise (

how well the data agrees with the model Ax=b

‖Ax − b‖, ‖x‖
how large are your model parameters

) (10)

A ∈ Rm×n is a matrix of n predictors;

x ∈ Rn are the parameters;

b ∈ Rm is a vector of responses.

Idea:

We want a good fit of Ax = b, but we want to do it efficiently,

i.e., with small ‖x‖, so we add to the objective a term that penalises

large x .

Regularisation avoids large x .

13
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Regularised approximation

minimise ‖Ax − b‖+ λ ‖x‖ (11)

Standardise A, so that each column has zero mean and unit variance.

Solution for λ > 0 traces out optimal trade-off curve (sweep λ from 0 to ∞).

Convex problem, so we know how to solve it.

Ridge regression

minimise ‖Ax − b‖2
2 + λ ‖x‖2

2 (12)

Squared objective makes problem smooth (second-derivative exists) and we have an

analytical solution.

Can be solved as a least squares problem with the analytical solution:

x = (ATA + λI )−1ATb. (13)

14
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The Lasso

Lasso (least absolute shrinkage and selection operator)

minimise ‖Ax − b‖2
2 + λ ‖x‖1 (14)

Statistical procedure that solves the ordinary least squares problem

penalised with an l1 norm (it promotes sparsity).

If λ = 0 you get the least squares solution.

if λ =∞ you get x = 0.

The Lasso tries to fit a model by selecting variables:

Start at λ = ∞, where you find no variables;

As you decrease λ the Lasso will include more and more variables,

one at a time.

Convex problem, so we know how to solve it efficiently.

15
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The Lasso

minimise ‖Ax − b‖2
2 + λ ‖x‖1 (15)

Can also be written as:

n∑
i=1

yi −
intercept

β0−
p∑

j=1

βjxij

2

Residual Sum of Squares

+λ

p∑
j=1

|βj | (16)
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ELAAD dataset

ElaadNL: Dutch research organisation involved in the development

and deployment of EV charging technologies.

1, 747 georeferenced charging stations.

54, 000 users, each identified by a unique id.

1, 060, 763 charging events.

Data collected between January 2012 and March 2016.

17
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ELAAD: spatial data

Coverage

A B
Legend

ElaadNL 2015
Charging stations 2015

0.0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1.0

Figure 2: Public charging stations in the ElaadNL data set in 2015 (triangles) shown together with the Charging stations 2015 dataset

(crosses). In the year 2015, 17 786 publicly available connectors for slow charging were operational in the NL. We identified 8 400 unique

positions of charging stations, i.e. considering the distribution of connectors at charging stations observed in the ElaadL dataset, this data

covers 78.3% of all stations. In panel (B), we estimated the spatial representativeness of the ElaadNL data sets by calculating the ratio

between the number of station in ELaadNL and in Charging stations 2015 located in squared cells of a regular grid. In the largest cities,

Amsterdam and Rotterdam, the data contains a small percentage of all charging stations.
18
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Predictors: GIS data

Vector data

Polygon data

population cores,

neighbourhoods data,

energy atlas,

liveability,

land use and land cover (urban atlas, CBS land cover).

Polyline data

traffic flow data.

Point data

OSM amenities,

OpenChargeMap.

Raster data

LandScan - ambient population.
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Vector polygon data: Population cores (2168 cores)

Figure 3: Population cores are continuous spatial units with at least 25 homes or 50 inhabitants

(102 predictors). Source: Statistics Netherlands https://opendata.cbs.nl/

20
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Polygon data: Population cores (2168 cores)

number of persons in private household,

number of persons in private households, 0 to 15 years,

number of persons in private households, 15 to 25 years,

number of persons in private households 25 to 45 years,

number of persons in private households, 45 to 65 years,

number of persons in private households 65 years or older,

number of persons in one-person households,

number of people in multi-person household with children,

number of people in multi-person household without children,

nercentage of working population, 15-24 years old,

number of households of two persons,

number of households of three persons,

the number of residential units,

. . .

21
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Lasso

Figure 4: Lasso

n∑
i=1

yi −
intercept

β0 −
p∑

j=1

βj xij


2

Residual Sum of Squares

+λ

p∑
j=1

|βj | (17)
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Lasso

Figure 5: Lasso

23
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Lasso fit

Lasso does variable selection on 240 predictors.

At the optimal λ, we reduce the number of predictors to 79 (about

1/3 of the original predictors).

R2 = 0.362 at optimum value (R2(adjusted) = 0.316).

The λmin is the one which minimises the cross-validation error. The

λ1σ is the λ value within 1 standard error of λmin.

Coefficient Meaning

-27.8627 The percentage of working population working in Mining, Manufacturing and Construction.

20.3313 The percentage of working population employed in commercial services

18.169 The percentage working population engaged in agriculture, forestry and fisheries, industry, commercial and non-commercial services

-0.1884 The percentage of the number of multi-person households without children

4.1384 Number of business Services

14.5717 Property unknown (no link between the addresses of the Key Registers Addresses and the housing register Cadaster).

57.8468 Average income per inhabitant

-0.9093 Average distance of all residents in an area to the nearest shops for groceries.

24
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Data-driven discovery of dynamical systems

Goal of computationally-oriented scientists:

Inferring a (typically nonlinear) model from observations that both correctly iden-

tifies the underlying dynamics and generalises qualitatively and quantitatively to

unmeasured parts of the phase, parameter, or application space.

ODE or PDE system described by

ut = N(u, x , t;
parameter

µ) (18)

Our objective is to discover N(.) given only time-series measurements of the

system.

A key assumption (prior) is that the true N(.) is comprised of only a few terms,

making the model sparse in the space of all possible combinations of functions.

For example, Burgers’ equation

N = −uux + µuxx (19)

and the harmonic oscillator

N = −iµx2u − i~uxx/2 (20)

each have only two terms.
25
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Identifying Dynamical Systems

Discovering governing equations from data by sparse
identification of nonlinear dynamical systems
Steven L. Bruntona,1, Joshua L. Proctorb, and J. Nathan Kutzc

aDepartment of Mechanical Engineering, University of Washington, Seattle, WA 98195; bInstitute for Disease Modeling, Bellevue, WA 98005;
and cDepartment of Applied Mathematics, University of Washington, Seattle, WA 98195

Edited by William Bialek, Princeton University, Princeton, NJ, and approved March 1, 2016 (received for review August 31, 2015)

Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine learning with nonlinear dynamical systems to discover
governing equations from noisy measurement data. The only as-
sumption about the structure of themodel is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regression to determine the fewest terms in the dynamic
governing equations required to accurately represent the data. This
results in parsimonious models that balance accuracy with model
complexity to avoid overfitting. We demonstrate the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear oscillators and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

Advances in machine learning (1) and data science (2) have
promised a renaissance in the analysis and understanding of

complex data, extracting patterns in vast multimodal data that are
beyond the ability of humans to grasp. However, despite the rapid
development of tools to understand static data based on statistical
relationships, there has been slow progress in distilling physical
models of dynamic processes from big data. This has limited the
ability of data science models to extrapolate the dynamics beyond
the attractor where they were sampled and constructed.
An analogy may be drawn with the discoveries of Kepler and

Newton. Kepler, equipped with the most extensive and accurate
planetary data of the era, developed a data-driven model for plan-
etary motion, resulting in his famous elliptic orbits. However, this
was an attractor-based view of the world, and it did not explain the
fundamental dynamic relationships that give rise to planetary orbits,
or provide a model for how these bodies react when perturbed.
Newton, in contrast, discovered a dynamic relationship between
momentum and energy that described the underlying processes re-
sponsible for these elliptic orbits. This dynamic model may be
generalized to predict behavior in regimes where no data were
collected. Newton’s model has proven remarkably robust for engi-
neering design, making it possible to land a spacecraft on the moon,
which would not have been possible using Kepler’s model alone.
A seminal breakthrough by Bongard and Lipson (3) and Schmidt

and Lipson (4) has resulted in a new approach to determine the
underlying structure of a nonlinear dynamical system from data.
This method uses symbolic regression [i.e., genetic programming
(5)] to find nonlinear differential equations, and it balances com-
plexity of the model, measured in the number of terms, with model
accuracy. The resulting model identification realizes a long-sought
goal of the physics and engineering communities to discover

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11–13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)
In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14–16) and
compressed sensing (17–22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23–30).
Here, we consider dynamical systems (31) of the form

d
dt
xðtÞ= fðxðtÞÞ. [1]

The vector xðtÞ∈Rn denotes the state of a system at time t, and
the function fðxðtÞÞ represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s
second law. Later, the dynamics will be generalized to include
parameterization, time dependence, and forcing.

Significance

Understanding dynamic constraints and balances in nature has
facilitated rapid development of knowledge and enabled
technology, including aircraft, combustion engines, satellites,
and electrical power. This work develops a novel framework to
discover governing equations underlying a dynamical system
simply from data measurements, leveraging advances in spar-
sity techniques and machine learning. The resulting models are
parsimonious, balancing model complexity with descriptive
ability while avoiding overfitting. There are many critical data-
driven problems, such as understanding cognition from neural
recordings, inferring climate patterns, determining stability of
financial markets, predicting and suppressing the spread of
disease, and controlling turbulence for greener transportation
and energy. With abundant data and elusive laws, data-driven
discovery of dynamics will continue to play an important role
in these efforts.

Author contributions: S.L.B., J.L.P., and J.N.K. designed research; S.L.B. performed re-
search; S.L.B., J.L.P., and J.N.K. analyzed data; and S.L.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. Email: sbrunton@uw.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1517384113/-/DCSupplemental.

3932–3937 | PNAS | April 12, 2016 | vol. 113 | no. 15 www.pnas.org/cgi/doi/10.1073/pnas.1517384113
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Data-driven discovery of dynamical systems: method

Method:

Construct a library Θ(U) of candidate linear, nonlinear, and partial

derivative terms for the right-hand side.

Each column of Θ(U) contains the values of a candidate term

evaluated using the collected data.

In this library, one can write the dynamics as

Ut = Θ(U)ξ (21)

where

Ut is a vector of time derivatives of the measurement data.

ξ is a sparse vector, with each nonzero entry corresponding to a

functional term to be included in the dynamics.

Finding the sparsest vector ξ consistent with the measurement data

is now feasible with advanced methods in sparse regression, which

makes it possible to find the most parsimonious model while

circumventing a combinatorial search. 27
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Identifying the Lorenz Equations

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.
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Most published research findings are probably false [Ioannidis]

False discovery rate (FDR), Benjamini-Hochberg ’95

True positives False negatives False positives

1000 hypotheses to testFigure 6: 1000 hypotheses to test.

credit: Emmanuel Candes (Stanford), The Economist (19/10/2013)
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Most published research findings are probably false [Ioannidis]

False discovery rate (FDR), Benjamini-Hochberg ’95

True positives False negatives False positives

1000 hypotheses, 100 potential discoveries

1

Figure 7: 1000 hypotheses, 100 potential discoveries.
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Most published research findings are probably false [Ioannidis]

False discovery rate (FDR), Benjamini-Hochberg ’95

True positives False negatives False positives

1000 hypotheses, 100 potential discoveries

1

Figure 8: Out of these 1000 hypotheses, 100 hypotheses are potential discoveries (in yellow), but

900 are null (the white squares).
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Most published research findings are probably false [Ioannidis]
Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Power ≈ 80% −→ true positives ≈ 80
False positives (5% level) ≈ 45

=⇒ False discovery rate ≈ 36%

Power≈80% → true positives≈ 80

(I have 80% chance to declare potential discoveries [green and yellow squares] as

positive [green squares])

False positives (5% level)≈ 45

(I detect 5% of the 900 that are completely irrelevant [red squares])
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Most published research findings are probably false [Ioannidis]
Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Reported

True positives False negatives False positives

Reported

Power ≈ 80% −→ true positives ≈ 80
False positives (5% level) ≈ 45

=⇒ False discovery rate ≈ 36%

1

When reporting, I don’t know which are true positives or false positives, so I just

report the positives.

Observe that a large fraction of reported discoveries is false.

In this example, over 1 in 3 hypotheses are null and thus cannot be replicated.
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Most published research findings are probably false [Ioannidis]
Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Reported

True positives False negatives False positives

Reported

Power ≈ 30% =⇒ False discovery rate ≈ 60%

More false negatives than true positives!

Now suppose that we drop the power from 80% to 30%: Power≈ 30%.

I still have on average 45 nulls [red squares].

But the number of true discoveries dropped: I now have 30 instead of 80.

False discover proportion:

FDP =
45

30 + 45
= 60%

Most of what I’m reporting is false!
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Small, low-powered studies are endemic in neuroscience

It has been claimed and demonstrated that many (and 
possibly most) of the conclusions drawn from biomedi-
cal research are probably false1. A central cause for this 
important problem is that researchers must publish in 
order to succeed, and publishing is a highly competitive 
enterprise, with certain kinds of findings more likely to 
be published than others. Research that produces novel 
results, statistically significant results (that is, typically 
p < 0.05) and seemingly ‘clean’ results is more likely to be 
published2,3. As a consequence, researchers have strong 
incentives to engage in research practices that make 
their findings publishable quickly, even if those prac-
tices reduce the likelihood that the findings reflect a true 
(that is, non-null) effect4. Such practices include using 
flexible study designs and flexible statistical analyses 
and running small studies with low statistical power1,5. 
A simulation of genetic association studies showed 
that a typical dataset would generate at least one false 
positive result almost 97% of the time6, and two efforts 
to replicate promising findings in biomedicine reveal 
replication rates of 25% or less7,8. Given that these pub-
lishing biases are pervasive across scientific practice, it 
is possible that false positives heavily contaminate the 
neuroscience literature as well, and this problem may 
affect at least as much, if not even more so, the most 
prominent journals9,10.

Here, we focus on one major aspect of the problem: 
low statistical power. The relationship between study 
power and the veracity of the resulting finding is 
under-appreciated. Low statistical power (because of 

low sample size of studies, small effects or both) nega-
tively affects the likelihood that a nominally statistically 
significant finding actually reflects a true effect. We dis-
cuss the problems that arise when low-powered research 
designs are pervasive. In general, these problems can be 
divided into two categories. The first concerns prob-
lems that are mathematically expected to arise even if 
the research conducted is otherwise perfect: in other 
words, when there are no biases that tend to create sta-
tistically significant (that is, ‘positive’) results that are 
spurious. The second category concerns problems that 
reflect biases that tend to co‑occur with studies of low 
power or that become worse in small, underpowered 
studies. We next empirically show that statistical power 
is typically low in the field of neuroscience by using evi-
dence from a range of subfields within the neuroscience 
literature. We illustrate that low statistical power is an 
endemic problem in neuroscience and discuss the impli-
cations of this for interpreting the results of individual 
studies.

Low power in the absence of other biases
Three main problems contribute to producing unreliable 
findings in studies with low power, even when all other 
research practices are ideal. They are: the low probability of 
finding true effects; the low positive predictive value (PPV; 
see BOX 1 for definitions of key statistical terms) when an 
effect is claimed; and an exaggerated estimate of the mag-
nitude of the effect when a true effect is discovered. Here, 
we discuss these problems in more detail.
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Power failure: why small sample 
size undermines the reliability of 
neuroscience
Katherine S. Button1,2, John P. A. Ioannidis3, Claire Mokrysz1, Brian A. Nosek4, 
Jonathan Flint5, Emma S. J. Robinson6 and Marcus R. Munafò1

Abstract | A study with low statistical power has a reduced chance of detecting a true effect, 
but it is less well appreciated that low power also reduces the likelihood that a statistically 
significant result reflects a true effect. Here, we show that the average statistical power of 
studies in the neurosciences is very low. The consequences of this include overestimates of 
effect size and low reproducibility of results. There are also ethical dimensions to this 
problem, as unreliable research is inefficient and wasteful. Improving reproducibility in 
neuroscience is a key priority and requires attention to well-established but often ignored 
methodological principles.

ANALYSIS
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Figure 9: Button et al., Nature Neuroscience, vol 14, 365 (2013)
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False discovery rate (FDR) [Benjamini-Hochberg]

Selection problem: How do we find true associations out of a sea of possibilities?

Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Reported

True positives False negatives False positives

Reported

Power ≈ 80% −→ true positives ≈ 80
False positives (5% level) ≈ 45

=⇒ False discovery rate ≈ 36%

1

H1, . . . ,Hn hypotheses to be tested

FDR = E
[

# false discoveries

# discoveries

]
= E

[
# red squares

# green+# red squares

]
.

0

0
= 0.

FDR is the fraction of irreproducibility.

Benjamini and Hochberg (‘95) proposed a simple algorithm to control the FDR,

i.e., to control the reliability of the model.
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The Knockoff filter

Why does the Lasso make errors?

Feature correlated with noise.

Feature correlated with a signal not included in the model.

Problem: How do we control the FDR of selected features
{
i : β̂i 6= 0

}
?

Knockoffs:

For each feature Xj , create a fake variable X̃j (knockoff).

Xj and X̃j are equally likely to be selected (when not in the model):

The covariance between knockoff features is the same as the

covariance between the two original features.

X̃ ′j X̃k = X ′j Xk for all j , k (22)

Knockoffs have the same covariance with a true feature that the two

original true features have with each other.

X̃ ′j Xk = X ′j Xk for all j 6= k (23)
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The Knockoff filter

Lasso:
n∑

i=1

yi −
intercept

β0−
p∑

j=1

βjxij

2

Residual Sum of Squares

+λ

p∑
j=1

|βj | (24)
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The Knockoff filter

Lasso selects say, 52 original features and 26 knockoff features ⇔
probably ≈ 26 false positives among the 52 original features.

Continue along the Lasso path until the ratio between the knockoffs

and the original features is below the target FDR –then stop.

Report only the original features you have found.

With this method, we can guarantee replicability.
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Summary

Scientists have been fitting data since the 19th century;

Variable selection methods, such as the Lasso, are a fresh take on

fitting problems;

The knockoffs framework allows us to fit reliably;

Need for automation in science and engineering.

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

Most discoveries may be false: Sorić (’89)

True positives False negatives False positives

Reported

True positives False negatives False positives

Reported

Power ≈ 80% −→ true positives ≈ 80
False positives (5% level) ≈ 45

=⇒ False discovery rate ≈ 36%

1
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