HEPData usage in ALICE

Enrico Scomparin (INFN Torino, Italy) - ALICE Collaboration

- Short summary on the ALICE policy/procedures for submission
- Some statistics on the collected data
- A few comments/suggestions for possible improvements

HEPData Advisory Board meeting, Durham, January 28 2020

ALICE procedures

Preparation of the HEPData record (YAML format) is a prerequisite for submission
 The record is prepared by the Paper Committee in charge of the paper and numerical values are checked by the Internal Review Committee

Sandbox tool is internally used to check the record before it becomes public

A link to the YAML record is included immediately in the private internal webpage of the paper

A link to the **public HEPData record** is also included

CONTENTS	Measurement of Upsilon(1S) v2 at forward rapidity in Pb-Pb collisions at 5.02
Published articles	TeV
Accepted articles	cvetan on 8 March, 2019 - 23:59
Submitted articles	Draft Status: Published Submission Date: 6 July, 2019
Papers Timeline	Related Public Paper: Measurement of $\Upsilon(1S)$ elliptic flow at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
Drafts	Article Information
Papers where I am PC member	Link to corresponding Note: https://alice-notes.web.cern.ch/node/868
Papers where I am IRC member	Reference arXiv: 1907.03169 Journal: Physical Review Letters
Papers in collaboration review	Accepted date: 2 October, 2019 Article Citation reference: Phys. Rev. Lett. 123, 192301
Upgrade documents	Publication link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.192301
EB tools	Publication date: 6 November, 2019
Statistics	* HEP Data
USER Enrico Scomparin	HEP Data file: 2019-06-25-hepdata-1561497248-v1-yaml.tar.gz HEP Data Link: HEP Data

ALICE procedures

Preparation of the HEPData record (YAML format) is a prerequisite for submission
 The record is prepared by the Paper Committee in charge of the paper and numerical values are checked by the Internal Review Committee

A link to the **public HEPData record** is included in the public webpage of the paper

CONTENTS		
Published articles		
Accepted articles		
Submitted articles		
Papers Timeline		
Drafts		
Papers where I am PC member		
Papers where I am IRC member		
Papers in collaboration review		
Upgrade documents		
EB tools		
Statistics		

Measurement of $\Upsilon(1S)$ elliptic flow at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02~\text{TeV}$

The first measurement of the $\Upsilon(1S)$ elliptic flow coefficient (v_2) is performed at forward rapidity (2.5 < y < 4) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum (p_T) up to 15 GeV/c in the 5-60% centrality interval. The measured $\Upsilon(1S)$ v_2 is consistent with zero and with the small positive values predicted by transport models within uncertainties. The v_2 coefficient in 2 < $p_T <$ 15 GeV/c is lower than that of inclusive J/ψ mesons in the same p_T interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the $\Upsilon(1S)$ production in Pb-Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision whereas in the J/ψ case there is substantial experimental evidence of an additional regeneration component.

Phys. Rev. Lett. 123, 192301 HEP Data e-Print: arXiv:1907.03169 | PDF | inSPIRE CERN-EP-2019-144 ALICE paper id: 5123 (internal)

Figures

ALICE procedures

Preparation of the HEPData record (YAML format) is a prerequisite for submission
 The record is prepared by the Paper Committee in charge of the paper and numerical values are checked by the Internal Review Committee

The link in the arXiv page points to the public page of the paper which contains the link to the HEPData record

(or arXiv:1907.03169v3 [nucl-ex] for this version)

arXiv.org > nu	cl-ex > arXiv:1907.03169
	Heip /
Nuclear Exp	periment
Measure	ement of $\Upsilon(1\mathrm{S})$ elliptic flow at forward rapidity in Pb-Pb collisions at $\sqrt{s_{ m NN}}=5.02$ TeV
ALICE Colla	boration
(Submitted on 6	5 Jul 2019 (v1), last revised 9 Dec 2019 (this version, v3))
The first me are obtained and with the standard de by dissociat	easurement of the $\Upsilon(1S)$ elliptic flow coefficient (v_2) is performed at forward rapidity (2.5 < y < 4) in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The results d with the scalar product method and are reported as a function of transverse momentum (p_T) up to 15 GeV/c in the 5-60% centrality interval. The measured $\Upsilon(1S) v_2$ is consistent with zero e small positive values predicted by transport models within uncertainties. The v_2 coefficient in $2 < p_T < 15$ GeV/c is lower than that of inclusive J/ψ mesons in the same p_T interval by 2.6 eviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the $\Upsilon(1S)$ production in Pb-Pb collisions at LHC energies is dominated tion limited to the early stage of the collision whereas in the J/ψ case there is substantial experimental evidence of an additional regeneration component.
Comments:	17 pages, 3 captioned figures, authors from page 12, published version, fixed MC predictions in Fig 2, figures at this http URL
Subjects:	Nuclear Experiment (nucl-ex); High Energy Physics - Experiment (hep-ex)
Journal reference	e: Phys. Rev. Lett. 123, 192301 (2019)
DOI:	10.1103/PhysRevLett.123.192301
Report number:	CERN-EP-2019-144
Cite as:	arXiv:1907.03169 [nucl.ex]

ALICE statistics

231 ALICE papers (out of 258 published papers) have a record available in the HEPData database

Papers may not have an HEPData record because

- Have as a result one (or a few) numerical values already reported in the paper
- Are of a technical nature, in this case the decision on preparing the record is left to the Paper Committee

Versioning

Possibility of versioning is not used very often, but is helpful to add information even after publication (example: new/extended binning for a given observable, that does not justify the publication of a follow-up paper)

Pversion 2 Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at $\sqrt{s_{ m NN}}$ =5.44TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.

Phys.Lett. B790 (2019) 35-48, 2019.

🖹 Inspire Record 1672756 % DOI 10.17182/hepdata.88397

In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, $dN_{ch}/d\eta$, and total charged-particle multiplicity, N_{ch}^{tot} , in Xe-Xe collisions at a centre-of-mass energy per nucleon--nucleon pair of $\sqrt{s_{NN}} = 5.44$ TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of $-3.5 < \eta < 5$. The values of $dN_{ch}/d\eta$ at mid-rapidity and N_{ch}^{tot} fo...

Uncertainties

It would be useful for both debugging purposes and also on the final record to have the possibility of **plotting the relative errors for a given set of data**

Prompt D0 without vertexing analysis, Figure 6 10.17182/hepdata.93013.v1/t1 https://www.hepdata.net/rec Data from Figure 6, right panel p_T differential cross section of prompt D0 mesons obtained from the analysis without vertexing reconstruction in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$. BR(D0) RE SORT(S)/NUCLEON YRAP(RF=CM)(D) observables 3.89 +- 0.04 % P PB --> \$ 5020.0 -0.96 TO 0.04 Visualize RE P PB --> D0(Q=PROMPT) X 30.000 -SORT(S)/NUCLEON 5020.0 GEV 25.000 -YRAP(RF=CM)(D) -0.96 TO 0.04 20.000d^2o/d pT dy [µb/GeV] PT(D) [GEV] 0.0 - 1.022300.0 ±2.23e+03 stat +1.28e+03 sys ±1.0% sys, uncertainty on branching ratio +1 15,000 more error Show all 10.000 -1.0 - 2.0 28500.0 ±2.26e+03 stat +1.65e+03 sys ±1.0% sys, uncertainty on branching ratio +1 more error Show all 5.000-2.0 - 3.0 21100.0 ±1.16e+03 stat +1.23e+03 sys ±1.0% sys, uncertainty on branching ratio +1 more error Show all DT/D) ICEV 3.0 - 4.0 8410.0 ±4.88e+02 stat +4.96e+02 sys ±1.0% sys, uncertainty on branching ratio + 1 more Sum errors Scale (Y) error Show all

12

PT(D) [GEV]

10

b/GeV]

Ph

- JSON

30000

doi:10.17182/hepdata.93013.v1/t1