Beyond the Flavour Anomalies, 1 April 2020

Global Fits of Flavour Anomalies

Presented by Sébastien Descotes-Genon & Peter Stangl

. ∍Th

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Outline

- Flavour Anomalies
- 2 Theoretical Framework
- 3 Analysis Inputs

4 Results

6 Conclusions

Flavour Anomalies

$b ightarrow s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by 2-3 σ :

- Angular observable P'_5 in $B \to K^* \mu^+ \mu^-$. LHCb, arXiv:2003.04831
- Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

Hints for LFU violation in $b ightarrow s \ell^+ \ell^-$ decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1705.05802, arXiv:1903.09252

Belle, arXiv:1904.02440, arXiv:1908.01848

$$\mathcal{R}_{\mathcal{K}^{(*)}} = rac{BR(B
ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-)}{BR(B
ightarrow \mathcal{K}^{(*)} e^+ e^-)}$$

Hints for LFU violation in $b ightarrow c \,\ell \, u$ decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by about 3σ . BaBar, arXiv:1205.5442, arXiv:1303.0571 LHCb, arXiv:1506.08614, arXiv:1708.08856

Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529, arXiv:1904.08794

HFLAV, hflav.web.cern.ch

ATLAS, arXiv:1812.03017

Combination of ${\it B}_{s,d} o \mu^+ \mu^-$ measurements

Measurements of BR($B_{s,d} \rightarrow \mu^+ \mu^-$) by LHCb, CMS, and ATLAS show combined deviation from SM by about 2σ .

 6×10^{-10} ATLAS LHCb 5CMS full comb. ${\rm BR}(B^0\to\mu^+\mu^-)$ Gaussian comb. SM prediction 3-1 0 $\times 10^{-9}$ $\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-)$

Theoretical Framework

$b \rightarrow s \ell \ell$ in the weak effective theory

► Effective Hamiltonian at scale m_b : $\mathcal{H}_{eff}^{bs\ell\ell} = \mathcal{H}_{eff, SM}^{bs\ell\ell} + \mathcal{H}_{eff, NP}^{bs\ell\ell}$

$$\mathcal{H}_{\mathrm{eff,\,NP}}^{bs\ell\ell} = -\mathcal{N}\sum_{\ell=e,\mu}\sum_{i=9,10,\mathcal{S},\mathcal{P}} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \mathrm{h.c.}$$

• Operators considered here ($\ell = e, \mu$)

$$\begin{array}{ll} O_9^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_L b\right) (\bar{\ell}\gamma^\mu \ell) \,, & O_9'^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_R b\right) (\bar{\ell}\gamma^\mu \ell) \,, \\ O_{10}^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_L b\right) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, & O_{10}'^{bs\ell\ell} &= \left(\bar{s}\gamma_\mu P_R b\right) (\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \\ O_S^{bs\ell\ell} &= m_b (\bar{s}P_R b) (\bar{\ell}\ell) \,, & O_S'^{bs\ell\ell} &= m_b (\bar{s}P_L b) (\bar{\ell}\ell) \,, \\ O_P^{bs\ell\ell} &= m_b (\bar{s}P_R b) (\bar{\ell}\gamma_5 \ell) \,, & O_P'^{bs\ell\ell} &= m_b (\bar{s}P_L b) (\bar{\ell}\gamma_5 \ell) \,. \end{array}$$

Not considered here

- Dipole operators: strongly constrained by radiative decays. e.g. [arXiv:1608.02556]
- Four quark operators: dominant effect from RG running above m_B.

Jäger, Leslie, Kirk, Lenz [arXiv:1701.09183]

$$A(B \to M\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(\mathbf{A}_{\mu} + T_{\mu}) \bar{u}_{\ell} \gamma^{\mu} v_{\ell} + \mathbf{B}_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_5 v_{\ell}]$$

Form factors (local)

Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle M|\bar{\mathbf{s}}\sigma_{\mu\nu}P_{B}b|B\rangle + \mathcal{C}_{9}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \end{aligned}$$

Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle M|\bar{\mathbf{s}}\sigma_{\mu\nu}P_{B}b|B\rangle + \mathcal{C}_{9}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \end{aligned}$$

Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\boldsymbol{\mu}} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle M|\bar{\mathbf{s}}\sigma_{\mu\nu}P_{B}b|B\rangle + \mathcal{C}_{9}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \\ \mathbf{B}_{\boldsymbol{\mu}} &= \mathcal{C}_{10}\langle M|\bar{\mathbf{s}}\gamma_{\mu}P_{L}b|B\rangle \end{aligned}$$

Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

Overal agreement about both contributions, using various tools

Hadronic uncertainties: form factors

3 form factors for K, 7 form factors for ${\it K}^{*}$ and ϕ

Iow recoil: lattice QCD

[Horgan, Liu, Meinel, Wingate; HPQCD collab]

Iarge recoil: Light-Cone Sum Rules (B-meson or light-meson DAs)

[Khodjamirian, Mannel, Pivovarov, Wang; Bharucha, Straub, Zwicky; Gubernari, Kokulu, van Dyk] $V^{B \to K^*}$

- known from direct determination and/or combined fit to low and large recoils [PS]
 - recovered from EFT with $\mathit{m_b}
 ightarrow \infty$ + $\mathit{O}(lpha_{s})$ + $\mathit{O}(1/\mathit{m_b})$

[Jäger, Camalich; Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

optimised observables P_i to reduce the impact of form factor uncertainties

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to C_{9ℓ}
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- ▶ SM effect contributing to C_{9ℓ}
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)
- Several approaches agree at low- q^2
 - LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

- order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- fit of sum of resonances to the data

[Blake, Egede, Owen, Pomery, Petridis]

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $C_{9\ell}$
- depends on q², lepton univ.
- quark-hadron duality approx at large q² (syst of few %)
- Several approaches agree at low- q^2
 - LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

- order of magnitude estimate for the fits (LCSR or Λ/m_b), check with bin-by-bin fits [Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]
- fit of sum of resonances to the data
- fit of q²-parametrisation to the data

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias]

dispersive representation + $J/\psi, \psi(2S)$ data

[Bobeth, Chrzaszcz, van Dyk, Virto]

[Blake, Egede, Owen, Pomery, Petridis]

Setup

- PS: Global likelihood from smelli python package for comparing theory predictions to experimental data Aebischer, Kumar, PS, Straub, arXiv:1810.07698
- SDG: Likelihood taking into account experimental and theoretical uncertainties and correlations in Gaussian approximation

[Algueró, Capdevila, Crivellin, SDG, Masuan Matias, Novoa-Brunet, Virto]

- Two statistical quantities of interest to asses a NP scenario/hypothesis
 - *p*-value of a given hypothesis: \(\chi_{min}^2\) considering \(N_{dof}\) (in \(%)\) goodness of fit: does the hypothesis give an overall good fit ? and if not, can we exclude it ?
 - Pull_{SM} : $\chi^2(C_i = 0) \chi^2_{min}$ considering N_{dof} (in σ units) metrology: how well does the hypothesis solve SM deviations ?

Analysis Inputs

Experimental inputs

$R_{\mathcal{K}}, R_{\mathcal{K}^*}$	(large- and low-recoil bins)
$B ightarrow K^* \mu \mu$	(Br and ang obs)
$B ightarrow K^* ee$	(ang obs)
$B_s o \phi \mu \mu$	(Br and ang obs)
${\cal B}^+ o {\cal K}^+ \mu \mu, {\cal B}^0 o {\cal K}^0 \mu \mu$	(Br and ang obs)
$B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu, B_s \to \phi \gamma, B \to K^* \gamma$	(Br)

including LHCb, ATLAS, CMS, Babar and Belle data whenever available

- SDG: No inclusion of additional observables that are not directly related to b → sℓℓ and b → sγ (would require extra assumption on NP model)
- PS: Global likelihood contains many other observables not directly sensitive to considered Wilson coefficients
- PS: Theory correlations with $\Delta F = 2$ observables have an effect on the fit

Theoretical inputs

SDG:

- Form factors: B-meson DA LCSR + lattice + EFT for correlations
- Charm-loop corrections: Perturbative contribution + magnitude of of long-distance contrib inspired by [Khodjamirian, Mannel, Pivovarov, Wang]
- Quark-duality violation at high q^2 : 10% effect at the level of the amplitude
- ► $Br(B_s \rightarrow \mu\mu)$ modified to include latest corrections from [Misiak ; Beneke, Bobeth, Szafron] PS:
 - Form factors: For *B* to light vector meson from [Bharucha, Straub, Zwicky], for $B \to K$ from [Gubernari, Kokulu, van Dyk]
 - Non-factorizable effects parametrized as in [Bharucha, Straub, Zwicky], [Altmannshofer, Straub], compatible with [Khodjamirian, Mannel, Pivovarov, Wang], [Bobeth, Chrzaszcz, van Dyk, Virto]
 - Additional parametric uncertainties (e.g. CKM) based on [flavio v2.0] with default settings

Results

1D Scenarios for $C_{i\mu}$ [2020]

		All		LFUV		
1D Hyp.	1 σ	$Pull_{\mathrm{SM}}$	p-value	1 σ	$Pull_{\mathrm{SM}}$	p-value
$\mathcal{C}^{\mathrm{NP}}_{9\mu}$	[-1.19, -0.88]	6.3	37.5%	[-1.25, -0.61]	3.3	60.7%
$\mathcal{C}_{9\mu}^{\rm NP}=-\mathcal{C}_{10\mu}^{\rm NP}$	[-0.59, -0.41]	5.8	25.3%	[-0.50, -0.28]	3.7	75.3%
$\mathcal{C}_{9\mu}^{\mathrm{NP}}=-\mathcal{C}_{9'\mu}$	[-1.17, -0.87]	6.2	34.0%	[-2.15, -1.05]	3.1	53.1 %

- ► LFUV fit: R_K , R_{K^*} , $Q_{4,5}$, $B_s \rightarrow \mu\mu$, $b \rightarrow s\gamma$
- All : all $b \to s\ell\ell$ and $b \to s\gamma$ observables
- Pull_{SM} in σ units increased compare to [2019]
- p-value of SM hyp decreased from 11% to 1.4% (2.5σ) for the fit "All"

Scenarios with a single Wilson coefficients

Coefficient	type	best fit	1σ	${\sf pull_{1D}} = \sqrt{\Delta\chi^2}$
${\cal C}_9^{bs\mu\mu}$	$L \otimes V$	-0.93	[-1.07, -0.79]	6.2 σ
$C_9^{\prime b s \mu \mu}$	$R\otimes V$	+0.14	[-0.02, +0.31]	0.9σ
$m{\mathcal{C}}_{10}^{bs\mu\mu}$	$L \otimes A$	+0.71	[+0.58, +0.84]	5.7 σ
$C_{10}^{\prime b s \mu \mu}$	$R\otimes A$	-0.20	[-0.29, -0.08]	1.7σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$L\otimes R$	+0.15	[+0.02, +0.29]	1.2σ
$\mathcal{C}_9^{bs\mu\mu}=-\mathcal{C}_{10}^{bs\mu\mu}$	$L \otimes L$	-0.53	[-0.61, -0.46]	6.9 σ

Only small pull for

- Coefficients with $\ell = e$ (cannot explain $b \rightarrow s\mu\mu$ anomaly)
- Scalar coefficients (can only reduce tension in $B_s \rightarrow \mu \mu$)

see also similar fits by other groups: Ciuchini et al., arXiv:1903.09632 Kowalska et al., arXiv:1903.10932

Datta et al., arXiv:1903.10086 Arbey et al., arXiv:1904.08399

2D Scenarios for $C_{i\mu}$ [2019]

2D Scenarios for $C_{i\mu}$ [2020]

2D and 6D Scenarios for $C_{i\mu}$ [2020]

		All			LFUV	
2D Hyp.	Best fit	$Pull_{\mathrm{SM}}$	p-value	Best fit	$Pull_{\mathrm{SM}}$	p-value
$\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}} ight)$	(-0.98,0.19)	6.2	39.8%	(-0.31,0.44)	3.2	70.0%
$(\mathcal{C}^{\mathrm{NP}}_{\mathfrak{9}\mu},\mathcal{C}_{\mathfrak{9'}\mu})$	(-1.14,0.55)	6.5	47.4%	(-1.86,1.20)	3.5	81.2%
$(\mathcal{C}^{\mathrm{NP}}_{9\mu},\mathcal{C}_{10'\mu})$	(-1.17,-0.33)	6.6	50.3%	(-1.87,-0.59)	3.7	89.6%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\mathrm{NP}} = \mathcal{C}_{10'\mu})$	(-1.10,0.28)	6.5	48.9%	(-1.69,0.29)	3.5	82.4%
$\left(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu}=-\mathcal{C}_{10'\mu} ight)$	(-1.17,0.23)	6.6	51.1%	(-2.05,0.50)	3.8	91.9%

- Right-handed currents appear quite naturally
- No change in the hierarchy of scenarios

	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$C_{9'\mu}$	$\mathcal{C}_{10'\mu}$
Bfp	+0.00	-1.13	+0.20	+0.00	+0.49	-0.10
1σ	[-0.02, +0.02]	[-1.30, -0.96]	[+0.05, +0.37]	[-0.01, +0.02]	[+0.04, +0.95]	[-0.33, +0.14]
2σ	[-0.03, +0.04]	[-1.46, -0.78]	[-0.09, +0.57]	[-0.03, +0.04]	[-0.39, +1.45]	[-0.55, +0.41]

- ▶ $Pull_{SM}$: 5.1 [2019] → 5.8 σ [2020]
- ▶ *p*-value: 81.6% [2019] → 46.8% [2020]

Comments on the $B ightarrow K^* \mu \mu$ data

New data from LHCb

- uncertainty reduced by 30 50% (in particular [1.1, 2.5] and [2.5, 4])
- new average value for F_L in the bin [2.5, 4] more than 4σ below 1, helping the discussion in terms of optimised observables P_i

Excellent consistency

- new tensions with respect to the SM in $\langle P_3 \rangle_{[1.1,2.5]}, \langle P'_6 \rangle_{[6,8]}$ and $\langle P'_8 \rangle_{[1.1,2.5]}$
- enhanced tension for other observables such as the first bin of P_{1,2}
- tension in first bin of P'_5 decreased, in better agreement with theory (see later) Solve earlier tensions of the fit discussed in [Algueró, Capdevila, SDG, Masjuan Matias]

Consistency of the results over the q^2 range

Sanity check possible for the $C_{9\mu}$ NP hypothesis

- $B \to K^* \mu \mu \text{ Br + ang obs +}$ $B_s \to \mu \mu + B \to X_s \mu \mu +$ $b \to s \gamma$
- C^{NP}_{9µ} fitted separately for each bin
- Good agreement with global fit (2σ range)
- No indication of a q^2 variation
- In particular, agreement between low and large recoils with very different theoretical approaches and systematics

Consistency of the results over the q^2 range

Finding also **good agreement with** q^2 -independent C_9 considering data on $B \rightarrow K^* \mu \mu$ from LHCb, ATLAS, CMS, CDF (different binning)

[2019]:

Angular obs. slightly disfavour positive $C_{10}^{bs\mu\mu}$, but overall good agreement between different sectors

WET at 4.8 GeV

[2019]:

Angular obs. slightly disfavour positive $C_{10}^{bs\mu\mu}$, but overall good agreement between different sectors

[2020]:

Angular obs. slightly favour positive $C_{10}^{bs\mu\mu}$, agreement increased

WET at 4.8 GeV

WET at 4.8 GeV

[2019]:

Angular obs. slightly disfavour positive $C_{10}^{bs\mu\mu}$, but overall good agreement between different sectors

[2020]:

Angular obs. slightly favour positive $C_{10}^{bs\mu\mu}$, agreement increased

Global likelihood:

- Tension between fits to R_K & R_{K*} and b → sµµ observables in C₉ direction ⇒ LFU C₉?
- Purely left-handed C₉^{bsµµ} = -C₁₀^{bsµµ} yields very good fit to experimental data

- LFU contribution only affects $b \rightarrow s \mu \mu$ observables
- ► Tension between fits to b → sµµ observables and R_K & R_{K*} could be reduced by LFU contribution to C₉
- Perform two-parameter fit in space of $C_9^{\text{Univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

$$\begin{array}{ll} C_{9}^{bsee} = C_{9}^{\text{univ.}} & C_{10}^{bsee} = 0 \\ C_{9}^{bs\mu\mu} = C_{9}^{\text{univ.}} + \Delta C_{9}^{bs\mu\mu} & C_{10}^{bs\mu\mu} = -\Delta C_{9}^{bs\mu\mu} \\ C_{9}^{bs\tau\tau} = C_{9}^{\text{univ.}} & C_{10}^{bs\tau\tau} = 0 \end{array}$$

scenario first considered in Algueró et al., arXiv:1809.08447

[2019]: Preference for non-zero C₉^{univ.}

WET at 4.8 GeV

- [2019]: Preference for non-zero C₉^{univ.}
- [2020]: Preference for non-zero C₉^{univ.} slightly increased

WET at 4.8 GeV

WET at 4.8 GeV

- [2019]: Preference for non-zero C₉^{univ.}
- [2020]: Preference for non-zero C₉^{univ.} slightly increased
- C₉^{univ.} can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

RG effects require scale separation

Consider SMEFT at 2 TeV

Possible operators:

 $\begin{bmatrix} \mathbf{O}_{lq}^{(3)} \end{bmatrix}_{3323} = (\bar{l}_3 \gamma_\mu \tau^a l_3) (\bar{q}_2 \gamma^\mu \tau^a q_3): \\ \text{Can also explain } R_{D^{(*)}} \text{ anomalies!}$

•
$$[O_{lq}^{(1)}]_{3323} = (\bar{l}_3 \gamma_\mu l_3)(\bar{q}_2 \gamma^\mu q_3):$$

Strong constraints from $B \to K \nu \nu$ require $[C_{lq}^{(1)}]_{3323} \approx [C_{lq}^{(3)}]_{3323}$

Buras et al., arXiv:1409.4557

- $[O_{qe}]_{2333} = (\bar{q}_2 \gamma_\mu q_3)(\bar{e}_3 \gamma^\mu e_3)$ cannot explain $R_{D^{(*)}}$
- Four-quark operators cannot explain R_{D(*)}, models yielding large enough contributions already in tension with data

 [2019]: Clear preference for non-zero [C⁽¹⁾_{Iq}]₃₃₂₃ = [C⁽³⁾_{Iq}]₃₃₂₃

S. Descotes-Genon & P. Stangl (IJCLab & LAPTh)

 [2019]:
 Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃

$R_{D^{(*)}}$ explanation:

Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

 [2019]:
 Clear preference for non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃

R_D(*) explanation:

Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

[2020]:

Preference for **non-zero** $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$ slightly increased

 $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

[2019]:
 Clear preference for
 non-zero [C⁽¹⁾_{lq}]₃₃₂₃ = [C⁽³⁾_{lq}]₃₃₂₃

► *R*_{*D*}(*) explanation:

Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

[2020]:

Preference for **non-zero** $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$ slightly increased

Only a simple SMEFT scenario

 \Rightarrow Consider explicit models that yield this coefficients

⇒ Good candidate: U₁ Leptoquark

Scenarios for LFU and LFUV C_i [2019]

 R_{K} and $R_{K^{*}}$ support LFUV NP, but there could also be a LFU piece

[Algueró, Capdevila, SDG, Masjuan, Matias]

Scenarios for LFU and LFUV C_i [2020]

 R_{K} and R_{K^*} support LFUV NP, but there could also be a LFU piece

$$\mathcal{C}_{ie} = \mathcal{C}_{i}^{\mathrm{U}}$$
 $\mathcal{C}_{i\mu} = \mathcal{C}_{i}^{\mathrm{U}} + \mathcal{C}_{i\mu}^{\mathrm{V}}$

[Algueró, Capdevila, SDG, Masjuan, Matias]

Scenarios for LFU and LFUV C_i [2020]

6	Scenario	Best-fit point	1 <i>σ</i>	2 <i>σ</i>	$Pull_{\mathrm{SM}}$	p-value
Sc. 5	$\begin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} \\ \mathcal{C}^{\mathrm{V}}_{10\mu} \\ \mathcal{C}^{\mathrm{U}}_{9} = \mathcal{C}^{\mathrm{U}}_{10} \end{array}$	-0.54 +0.58 -0.43	$\begin{matrix} [-1.06, -0.06] \\ [+0.13, +0.97] \\ [-0.85, +0.05] \end{matrix}$	$\begin{matrix} [-1.68, +0.39] \\ [-0.48, +1.33] \\ [-1.23, +0.67] \end{matrix}$	6.0	39.4%
Sc. 6	$\mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu}$ $\mathcal{C}^{\mathrm{U}}_{9} = \mathcal{C}^{\mathrm{U}}_{10}$	-0.56 -0.41	[-0.65, -0.47] [-0.53, -0.29]	[-0.75, -0.38] [-0.64, -0.16]	6.2	41.4%
Sc. 7	$\mathcal{C}^{\mathrm{V}}_{\mathfrak{9}\mu} \ \mathcal{C}^{\mathrm{U}}_{\mathfrak{9}}$	-0.84 -0.25	$\begin{bmatrix} -1.15, -0.54 \end{bmatrix}$ $\begin{bmatrix} -0.59, +0.10 \end{bmatrix}$	$\begin{bmatrix} -1.48, -0.26 \end{bmatrix}$ $\begin{bmatrix} -0.92, +0.47 \end{bmatrix}$	6.0	36.5%
Sc. 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$ $\mathcal{C}_{9}^{\mathrm{U}}$	-0.34 -0.80	[-0.44, -0.25] [-0.98, -0.60]	[-0.54, -0.16] [-1.16, -0.39]	6.5	48.4%
Sc. 9	$\begin{array}{c} \mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu} \\ \mathcal{C}^{\mathrm{U}}_{10} \end{array}$	-0.66 -0.40	[-0.79, -0.52] [-0.63, -0.17]	[-0.93, -0.40] [-0.86, +0.07]	5.7	28.4%
Sc. 10	$\mathcal{C}^{\mathrm{V}}_{\mathfrak{9}\mu} \ \mathcal{C}^{\mathrm{U}}_{\mathfrak{10}}$	-1.03 +0.28	[-1.18, -0.87] [+0.12, +0.45]	$\begin{bmatrix} -1.33, -0.71 \end{bmatrix}$ $\begin{bmatrix} -0.04, +0.62 \end{bmatrix}$	6.2	41.5%
Sc. 11	$\mathcal{C}^{\mathrm{V}}_{\mathfrak{9}\mu} \ \mathcal{C}^{\mathrm{U}}_{\mathfrak{10'}}$	-1.11 -0.29	[-1.26, -0.95] [-0.44, -0.15]	$\begin{bmatrix} -1.40, -0.78 \end{bmatrix}$ $\begin{bmatrix} -0.58, -0.01 \end{bmatrix}$	6.3	43.9%
Sc. 12	$\mathcal{C}^{\mathrm{V}}_{\mathfrak{g}'\mu} \ \mathcal{C}^{\mathrm{U}}_{\mathfrak{10}}$	-0.06 + 0.44	$\begin{matrix} [-0.21, +0.10] \\ [+0.26, +0.62] \end{matrix}$	[-0.37, +0.26] [+0.09, +0.81]	2.1	2.2%
Sc. 13	$\mathcal{C}^{V}_{9\mu} \\ \mathcal{C}^{V}_{9'\mu} \\ \mathcal{C}^{U}_{10} \\ \mathcal{C}^{U}_{10'}$	-1.16 +0.56 +0.28 +0.01	$\begin{matrix} [-1.31, -1.00] \\ [+0.27, +0.83] \\ [+0.08, +0.49] \\ [-0.19, +0.22] \end{matrix}$	$\begin{array}{l} [-1.46,-0.83] \\ [-0.02,+1.10] \\ [-0.11,+0.70] \\ [-0.40,+0.42] \end{array}$	6.2	49.2%

S. Descotes-Genon & P. Stangl (IJCLab & LAPTh)

Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal inconsistencies of the fit

► for P'₅

for some of the scenarios

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal inconsistencies of the fit
 - for P'_5
 - between P'_5 and R_K

for some of the scenarios

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal inconsistencies of the fit
 - for P'_5
 - between P'_5 and R_K

for some of the scenarios

 p-value of SM decreased to 1.4%

$\begin{array}{l} \text{Connect } b \to s\ell\ell \text{ and } b \to c\ell\nu \text{ anomalies within SMEFT } (\Lambda_{NP} \gg m_{t,W,Z}) \\ \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4} \end{array} \\ \text{ with higher-dim ops involving only SM fields} \end{array}$

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

 $\begin{array}{l} \text{Connect } b \to s\ell\ell \text{ and } b \to c\ell\nu \text{ anomalies within SMEFT } (\Lambda_{NP} \gg m_{t,W,Z}) \\ \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4} \end{array} \\ \text{with higher-dim ops involving only SM fields} \end{array}$

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ anomalies within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEET} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

FCCC part of $\mathcal{O}_{2333}^{(3)}$ can describe $R_{D^{(*)}}$ (rescaling of G_F for $b \to c\tau\nu$)

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ anomalies within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEET} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$= [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}^{(3)}_{ijkl} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

FCCC part of $\mathcal{O}^{(3)}_{_{2233}}$ can describe $R_{D^{(*)}}$ (rescaling of G_F for $b \to c au
u$) • FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2322}^{(1)} = C_{2322}^{(3)}$

[Capdevila, Crivellin, SDG, Hofer, Matias]

- Large NP contribution $b \to s \tau \tau$ through $C_{9\tau}^{V} = -C_{10\tau}^{V}$
- Avoids bounds from $B \to K^{(*)} \nu \nu$, Z decays, direct production in $\tau \tau$

 $\begin{array}{l} \text{Connect } b \to s\ell\ell \text{ and } b \to c\ell\nu \text{ anomalies within SMEFT } (\Lambda_{NP} \gg m_{t,W,Z}) \\ \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4} \end{array} \\ \text{with higher-dim ops involving only SM fields} \end{array}$

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{D}_{ijkl}^{(1)} = [ar{Q}_i \gamma_\mu Q_j] [ar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [ar{Q}_i \gamma_\mu ec{\sigma} Q_j] [ar{L}_k \gamma^\mu ec{\sigma} L_l]$$

- ► FCCC part of $\mathcal{O}_{2333}^{(3)}$ can describe $R_{D^{(*)}}$ (rescaling of G_F for $b \to c\tau\nu$) ► FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ [Capdevila, Crivellin, SDG, Hofer, Matias] ► Large NP contribution $b \to s\tau\tau$ through $\mathcal{C}_{9\tau}^V = -\mathcal{C}_{10\tau}^V$ ► Avoids bounds from $B \to K^{(*)}\nu\nu$, Z decays, direct production in $\tau\tau$
 - Through radiative effects, (small) NP contribution to C_{a}^{U}

An EFT interpretation: *B* anomalies

Scenario LFU + LFUV NP (Sc 8)

- $C^{\rm V}_{9\mu} = \mathcal{C}^{\rm V}_{10\mu} \text{ from small } \mathcal{O}_{2322} \\ [b \to s\mu\mu]$
- ► C_9^U from radiative corr from large \mathcal{O}_{2333} [$b \rightarrow c \tau \nu$ and $b \rightarrow s \mu \mu$]

Generic flavour struct and NP at scale Λ

$$\begin{aligned} \mathcal{C}_9^{\mathrm{U}} &\approx & 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};\mathrm{SM}}}} \right) \\ &\times \left(1 + \frac{\log(\Lambda^2/(1\mathrm{TeV}^2))}{10.5} \right) \end{aligned}$$

- Agreement with (R_D, R_{D^*}) for $\Lambda = 1 10$ TeV
- Scenario 8 has Pull_{rmSM} of 7.4 σ once R_{D^*} included
- Huge ehhancement of b o s au au modes $O(10^{-4})$ [Capdevila, Crivellin, SDG, Hofer, Matias]

$$\mathrm{Br} \big(\textit{B}_{s} \rightarrow \tau^{+} \tau^{-} \big)_{\mathrm{LHCb}} \leq 6.8 \times 10^{-3} \,, \quad \mathrm{Br} \big(\textit{B} \rightarrow \textit{K} \tau^{+} \tau^{-} \big)_{\mathrm{Babar}} \leq 2.25 \times 10^{-3}$$

S. Descotes-Genon & P. Stangl (IJCLab & LAPTh)

Beyond the Flavour Anomalies, 1 April 2020

Conclusions

Conclusions

New $B o K^* \mu \mu$ data a very reassuring confirmation of the situation in $b o s \ell \ell$

- ▶ Increased consistency between $B \to K^* \mu \mu$ data and the rest of the global fit, in particular between R_K and P'_5
- Increase in the pull_{SM} of the favoured scenarios, no change in hierarchy of scenarios
- Possibility of right-handed currents in several favoured scenarios
- Possibility of LFU contributions, in good agreement with simple EFT interpretations combining b → cℓν and b → sℓℓ anomalies
- Significant decrease of the p-value of the SM

Backup slides

a

Simplified U₁-leptoquark model

• U_1 vector leptoquark $(3, 1)_{2/3}$ couples quarks and leptons

 $\mathcal{L}_{U_1} \supset g_{lq}^{jj} \left(ar{q}^j \gamma^\mu l^j
ight) U_\mu + ext{h.c.}$

Generates semi-leptonic operators at tree-level

$$[C_{lq}^{(1)}]_{ijkl} = [C_{lq}^{(3)}]_{ijkl} = -rac{g_{lq}^{jk}g_{lq}^{jl*}}{2M_U^2}$$

And dipole operators at one-loop, e.g. $[O_{dV}]_{ij} = (\bar{q}_i \sigma^{\mu\nu} V_{\mu\nu} d_j) \varphi, \quad V \in \{W, B, G\}:$

$$[C_{dV}]_{23} = \kappa_V \frac{Y_b}{16\pi^2} \sum_i \frac{g_{lq}^{i2} g_{lq}^{i3*}}{M_U^2}, \qquad \kappa_W = \frac{g}{6}, \quad \kappa_B = \frac{-4 g'}{9}, \quad \kappa_V = \frac{-5 g_s}{12}$$

Simplified U₁-leptoquark model

- *R_D(*)* mostly depends on tauonic couplings *g³²_{la}*, *g³³_{la}*
- Dipole operators contribute to $BR(B \rightarrow X_s \gamma)$
- RG running contributes to leptonic τ decays
- Well defined allowed region for explaining R_D(*), select benchmark point

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.7$$

Simplified U₁-leptoquark model

- *R_K(*)* can be explained by muonic couplings *g*²²_{lg}, *g*²³_{lg}
- Vanishing tauonic couplings: Tension between fits to $R_{\kappa(*)}$ and $b \rightarrow s \mu \mu$ observables after Moriond 2019

Simplified U₁-leptoquark model

- *R_K(*)* can be explained by muonic couplings *g*²²_{*lq*}, *g*²³_{*lq*}
- Vanishing tauonic couplings: Tension between fits to $R_{K^{(*)}}$ and $b \rightarrow s \mu \mu$ observables after Moriond 2019
- Benchmark point explaining $R_{D^{(*)}}$,

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.7,$$

implies non-zero $C_9^{\rm univ.}$, $R_{{\cal K}^{(*)}}$ and $b \to s \mu \mu$ in good agreement after Moriond 2019

Constraint from LFV observables

Pending questions

- Estimate of soft-gluon cc contribution from Light-Cone Sum Rules
 - Several cc̄ contributions, with hard and soft gluons (hard to estimate)
 - Soft-gluon correction from LCSR smaller than thought ? [Gubernari, Van Dyk]
 - Impact on contribution to be worked out (not used at face value in fits)

Narrow-width approx for form factors

- Not problem for K or ϕ , but for K^* ?
- Lattice QCD : other collaborations ?
- K^{*}-meson LCSR: not able to catch the effect (need to use Kπ DAs)
- B-meson LCSR: universal 10% effect, increasing SM discrepancy

[Khodjamirian, SDG, Virto]

