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Exclusive b→ sℓ+ℓ− Amplitudes

Aλ = Nλ

{
(C9 ∓ C10)Fλ(q2) +

2mbMB
q2

[
C7FT

λ(q2)− 16π2MB
mb

Hλ(q2)
]}

▶ non-local : Hλ(q2) = iPλµ
∫
d4x eiq·x ⟨K(k)| T

{
J µ

em(x), CiOi(0)
}
|B(q+ k)⟩

▶ major source of systematic uncertainty
▶ several approaches dependent on the phase space region (i.e.: q2)
▶ what are the properties of Hλ as a function of q2?
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Analytic structure of the H: dynamical singularities
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Understanding the p2 cut

Trick: add spurious momentum h to Oi
. recover physical kinematics as h→ 0

▶ consider Mandelstam variables

s ≡ (p+ h)2 −→ M2
B

u ≡ (k− h)2 −→ M2
K∗

t ≡ (q− h)2 −→
physical point

q2

▶ s independent of t

▷ cut in s ∼ p2 does not
translate into cut in t ∼ q2
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Understanding the p2 cut

Trick: add spurious momentum h to Oi
. recover physical kinematics as h→ 0

▶ consider Mandelstam variables

s ≡ (p+ h)2 −→ M2
B

u ≡ (k− h)2 −→ M2
K∗

t ≡ (q− h)2 −→
physical point

q2

▶ s independent of t

▷ cut in s ∼ p2 does not
translate into cut in t ∼ q2

▶ p2 cut does not induce
singularities in q2 as long as k2
is fixed

▶ two correlators:

Hλ(q2) → Hreal
λ (q2)+iHimag

λ (q2)

▶ the same dispersion relation
governs their q2-dependence
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Light-hadron cut
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[sketch from Blake, Gershon, Hiller 1501.03309]

We do not consider the light-hadron cut here or in the following!

▶ peaks only locally around ∼ 1 GeV2
▶ perturbatively small (O (αs))
▶ empirically small (Γ(J/ψ))

▶ will need to be considered once very precise data become available 5/19



Strategy
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Parametrize the local matrix elements in the complex half plane with
Req2 < 4M2

D [Bobeth.Chrzaszcz,DvD,Virto ’17]

▶ fit to experimental data on narrow charmonium resonances
▶ fit to theory predictions in Light-Cone OPE region (O (αs))
▶ use in semileptonic region 6/19



Basics of the parametrization

q2 < 0

∩ 0 ≤ q2 ≤ 4M2
D

∩ q2 ∈ {M2
J/ψ,M2

ψ′}
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ansatz in z valid below the DD threshold [Bobeth, Chrzaszcz, van Dyk, Virto 2017]

motivated by ”z-parametrization” of form factors [Boyd et al 1994, Bourelly et al 2008]

1. Extract the poles:
Ĥλ(q2) = (q2 − M2

J/ψ)(q
2 − M2

ψ(2S))Hλ(q2)

2. Ĥλ(q2) still has DD cut.

3. perform conformal mapping q2 7→ z(q2).

4. branch cut in q2 is mapped onto the unit circle in z.

5. Ĥλ(z) analytic within unit circle.

6. power expand Ĥλ(z) around z = 0.
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Three open questions

Light-Cone OPE What is the size of next-to-leading power terms in the
light-cone OPE?

First LCSR calculation of the hadronic matrix elements
was incomplete. [Khodjamirian et al. ’10]

Missing terms can have numerically significant impact.
[Kokulu,Gubernari,DvD ’18]

Singularities Are there further singularities?

In a previous analysis we only discussed singularities of
dynamical origin. [Bobeth,Chrzaszcz,DvD,Virto ’17]

Bounds Is there an upper bound on the size of the z-expansion
coefficients?

For form factors we can derive an upper bound through
an integral representation of vacuum matrix elements. [e.g.

Boyd,Grinstein,Lebed ’95]
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Light-Cone OPE and Matrix
Elements



Calculation: Light-Cone OPE

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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0 x γ

b

s

0 x γ
ux

0 ≤ u ≤ 1

q2≪4m2
c−−−−−→

(
C1
3

+ C2
)
g(m2

c, q2)︸ ︷︷ ︸
coeff #1

[s Γµ b] +O (αs)

+ Iµαβγ(q2) [ sLγαG̃βγbL ] +O (αs)

▶ leading coefficients now known analytically
to O (αs) [de Boer ’17; Asatrian,Greub,Virto ’19]

9/19



Calculation: Light-Cone OPE

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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q2≪4m2
c−−−−−→

(
C1
3

+ C2
)
g(m2

c, q2)︸ ︷︷ ︸
coeff #1

[s Γµ b] +O (αs)

+ Iµαβγ(q2) [ sLγαG̃βγbL ] +O (αs)

▶ subleading coefficient I known
[Khodjamirian,Mannel,Pivovarov,Wang ’10]

▶ we confirm result for I : LC expansion
apparently breaks Ward identity [Gubernari,DvD,Virto w.i.p]
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Calculation: Matrix Elements

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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matrix elements schematically:

Hλ = g(q2)×Fλ +Hspect.
λ

+ I × F soft
λ

▶ leading part identical to QCD Fact. results
[Beneke, Feldmann, Seidel ’01&’04]

▶ subleading matrix element F soft
λ can be

inferred from B-LCSRs [Khodjamirian, Mannel, Pivovarov, Wang 2010]
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Calculation: Matrix Elements

4m2
c − q2 ≫ Λ2

hadr.

▶ expansion in operators at light-like
distances x2 ≃ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]

▶ employing light-cone expansion of
charm propagator [Balitsky, Braun 1989]
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▶ Updating B-LCSR calculation of the matrix
element of F soft

λ [Gubernari,DvD,Virto w.i.p.]

▶ Ward identity restored in LCSR! [Gubernari,DvD,Virto w.i.p.]

▶ PRELIMINARY at q2 = 1 GeV2 we find
suppression by a factor of 10× 20

▶ 10 from updated numerical inputs
▶ 20 from cancellations between “new” and

“old” LCDAs; indep. of inputs
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Singularities



Ambiguity in definition of matrix elements

▶ previous work only considered singularities of dynamical origin:
▶ poles from bound states
▶ branch cuts due to two-body thresholds

▶ another type of singularity is of kinematical origin.

will discuss these singularities at hand of a simpler example
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Ambiguity in defining the B→ K vector form factor

Consider two decompositions of the same matrix element

⟨K(k)| sγµb |B(p)⟩ ≡ f+(q2)(p+ k)µ + . . .

≡


√
λ(M2

B,M2
K,q2)

4M2
B

−3

f̃+(q2)(p+ k)µ + . . .

▶ left-hand side stays the same
▶

√
λ(...) term has singularity of kinematical origin if λ < 0

▶ f+ and f̃+ have different properties
▶ which is the correct one?
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Dispersive bound

Define an two-point correlation function Π1−(q2)

Π1−(q2) ≡ Pµν
∫
eiq·x ⟨0| T {sγµb(x),bγνs(0)}ket0

▶ for suitable q2 ≪ (mb +ms)
2 one can compute a certain derivative

of Π1− :

χ1−(q2)
∣∣∣∣
OPE

=

[
− d
dq2

]2
q2 Π1−(q2)

∣∣∣∣
OPE

∝
∫
ds s ImΠ1−(s)

[s− q2]4

▶ for any q2 < (MB +MK)
2 one can express Π1− as a dispersive

integral:

χ1−(q2)
∣∣∣∣
OPE

∝
∫
ds s

√
λ(s)3|f+(s)|2
[s− q2]4
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Integral representation

χ1−(q2)
∣∣∣∣
OPE

∝
∫
ds s

√
λ(s)3|f+(s)|2
[s− q2]4

▶ λ enters as combination of two-particle phase space and angular
momentum factor

▶ further terms depend on the type of the current and the number
of subtractions in the dispersive integral

▶ the integrand is supposed to be free of singularities
▶ absorb both types of terms into definition of f+ → F+, rendering

the integrand analytic
▶ the power of [s− q2] and the power of

√
λ(s) are fixed:

[s− q2] by the perturbative calculation√
λ(s) by phase space and angular momentum

conservation
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Resolving the ambiguity

Neither of the previous suggestions was the correct one:

⟨K(k)| sγµb |B(p)⟩ ≡ f+(q2)(p+ k)µ + . . .

≡


√
λ(M2

B,M2
K,q2)

4M2
B

−3

f̃+(q2)(p+ k)µ + . . .

Instead, require

⟨K(k)| sγµb |B(p)⟩ ≡


√
λ(M2

B,M2
K,q2)

4M2
B

−3/2

F+(q2)

tasks for the non-local matrix elements:

▶ need to come up with a dispersive representation of a suitable
correlation function!

▶ determine powers of poles and angular momentum branch cuts
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Bounds



Correlation Function

We investigate a four-point correlation function of the type

Π(q2) ∝
∫
d4x d4y d4z e−iq1·x e+iq2·y e−ih1·z

⟨0| T
{
Jµ(x), Jν(y),O(z),O†(0)

}
|0⟩ gµν

▶ incoming momenta q1 of the e.m. current and h1 artifically
inserted into the four quark operator O

▶ outgoing momenta q2 and h2
▶ impose h21 = 0 = h22
▶ physical limit is h1,2 → 0
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Diagrammatically

q1

c c

b

s

c c

q2

h1 h2

q1
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b

s

cc
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q1

c

b
s
c

c

c

q2

h1 h2

s ≡ (q1 + h1)2 t ≡ (q1 − q2)2 u ≡ (q1 − h2)2

▶ cuts in s are bs cuts ⇒ dispersion relation in
s

▶ cuts in t are flavour-less
▶ cuts in u are bs, but not independent of s or t

cuts
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Preliminary results (1)

χ(q2) ∝
[
d
dq2

]n
Π(q2)

∣∣∣∣
q2→−m2

b

▶ after renormalizing Π, 1/ε divergence is analytic in s
▶ OPE requires n = 3 subtractions to render χ finite

results obtained by applying large-q2 OPE to the time-ordered product

▶ results dominated by two insertions of dim-3 operators
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Preliminary results (2)

imaginary part of Π informs the kinematical singularities

▶ B→ K and B→ K∗ matrix elements enter with different powers of
λ, as expected from total angular momentum

▶ B→ K needs additional angular momentum to create P wave
→ ImΠ(s) ∝ λ(s)3/2

▶ B→ K∗ needs no additional angular momentum to create P wave
→ ImΠ(s) ∝ λ(s)1/2

▶ previous analysis did not remove kinematical singularities
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Ende



Summary / Outlook

▶ previous parametrization is only the first step toward toward
taming systematic uncertainties due to non-local effects

▶ light-hadron cut explicitly not yet included
▶ singularities due to charmonia and open-charm dynamics included
▶ kinematical singularities work in progress

▶ reanalysis of theory predictions at negative q2 ongoing
▶ form factors updated already
▶ large cancellations in F soft

λ due to terms missing in original work
▶ only few terms remains to be cross checked

▶ calculating dispersive bounds is a necessary step to understand
the parametrization

▶ allows to remove the kinematical singularities
▶ gives insight into rate of convergence of the parametrization
▶ provides parametric handle on systematic uncertainties
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