A path toward establishing or ruling out NP in C9

01.04.2020

Danny van Dyk based on prelim. work with N. Gubernari and J. Virto

Technische Universität München

Status Quo

[LHCb '20]

Exclusive $b \rightarrow s\ell^+\ell^-$ Amplitudes

► non-local : $\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4 x \, e^{iq \cdot x} \, \langle \overline{K}(k) | T \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \overline{B}(q+k) \rangle$

- major source of systematic uncertainty
- several approaches dependent on the phase space region (i.e.: q^2)
- what are the properties of \mathcal{H}_{λ} as a function of q^2 ?

Analytic structure of the \mathcal{H} : dynamical singularities

Understanding the p^2 cut

Trick: add spurious momentum h to \mathcal{O}_i recover physical kinematics as $h \to 0$

consider Mandelstam variables

$$s \equiv (p+h)^2 \longrightarrow M_B^2$$

$$u \equiv (k-h)^2 \longrightarrow M_{K^*}^2$$

$$t \equiv (q-h)^2 \xrightarrow[physical point]{} q^2$$

- ► s independent of t
 - ▷ cut in $s \sim p^2$ does not translate into cut in $t \sim q^2$

Understanding the p^2 cut

Trick: add spurious momentum h to \mathcal{O}_i recover physical kinematics as $h \to 0$

consider Mandelstam variables

$$s \equiv (p+h)^2 \longrightarrow M_E^2$$

$$u \equiv (k-h)^2 \longrightarrow M_{K^*}^2$$

 $t \equiv (q-h)^2 \xrightarrow[physical point]{} q^2$

- ► s independent of t
 - $\triangleright \ \mbox{ cut in } s \sim p^2 \mbox{ does not} \\ \mbox{ translate into cut in } t \sim q^2 \\$

- p² cut does not induce singularities in q² as long as k² is fixed
- two correlators:

 $\mathcal{H}_{\lambda}(q^2)
ightarrow \mathcal{H}^{\text{real}}_{\lambda}(q^2) + i \, \mathcal{H}^{\text{imag}}_{\lambda}(q^2)$

► the same dispersion relation governs their q²-dependence

Light-hadron cut

We do not consider the light-hadron cut here or in the following!

- peaks only locally around $\sim 1 \, {\rm GeV}^2$
- perturbatively small ($\mathcal{O}(\alpha_s)$)
- empirically small $(\Gamma(J/\psi))$
- ▶ will need to be considered once very precise data become available 5/19

Strategy

[sketch from Blake, Gershon, Hiller 1501.03309]

Parametrize the local matrix elements in the complex half plane with ${\rm Re}\,q^2 < 4M_D^2$ (Bobeth.Chrzaszcz,DvD,Virto '1

- ► fit to experimental data on narrow charmonium resonances
- ▶ fit to theory predictions in Light-Cone OPE region ($O(\alpha_s)$)
- use in semileptonic region

Basics of the parametrization

 $q^2 < 0$ $\cap \quad 0 \le q^2 \le 4M_D^2$ $\cap \quad q^2 \in \{M_{J/\psi}^2, M_{\psi'}^2\}$

ansatz in *z* **valid below the** *DD* **threshold** motivated by "*z*-parametrization" of form factors

[Bobeth, Chrzaszcz, van Dyk, Virto 2017] [Boyd et al 1994, Bourelly et al 2008]

- 1. Extract the poles: $\hat{\mathcal{H}}_{\lambda}(q^2) = (q^2 - M_{J/\psi}^2)(q^2 - M_{\psi(2S)}^2) \mathcal{H}_{\lambda}(q^2)$
- 2. $\hat{\mathcal{H}}_{\lambda}(q^2)$ still has $D\overline{D}$ cut.
- 3. perform conformal mapping $q^2 \mapsto z(q^2)$.
- 4. branch cut in q^2 is mapped onto the unit circle in z.
- 5. $\hat{\mathcal{H}}_{\lambda}(z)$ analytic within unit circle.
- 6. power expand $\hat{\mathcal{H}}_{\lambda}(z)$ around z = 0.

Three open questions

Light-Cone OPE What is the size of next-to-leading power terms in the light-cone OPE?

First LCSR calculation of the hadronic matrix elements was incomplete. [Khodjamirian et al. '10] Missing terms can have numerically significant impact.

[Kokulu,Gubernari,DvD '18]

Singularities Are there further singularities?

In a previous analysis we only discussed singularities of dynamical origin. [Bobeth,Chrzaszcz,DvD,Virto '17]

Bounds Is there an upper bound on the size of the z-expansion coefficients?

For form factors we can derive an upper bound through an integral representation of vacuum matrix elements. $_{\mbox{\scriptsize [e.g.}}$

Boyd,Grinstein,Lebed '95]

Light-Cone OPE and Matrix Elements

Calculation: Light-Cone OPE

 $4m_c^2 - q^2 \gg \Lambda_{\text{hadr.}}^2$

► expansion in operators at light-like
 distances x² ≃ 0 (Khodjamirian, Mannel, Pivovarov, Wang 2010)
 ► employing light-cone expansion of

charm propagator

 $+\,\mathcal{I}^{\mu\alpha\beta\gamma}(q^2)\,[\,\overline{s}_L\gamma_\alpha\tilde{G}_{\beta\gamma}b_L\,]+\mathcal{O}\left(\alpha_s\right)$

0 < u < 1

► leading coefficients now known analytically to $\mathcal{O}(\alpha_s)$ [de Boer '17; Asatrian,Greub,Virto '

E_{K'} [GeV]

OCDF 4

photon

07 - 09

interference

5

OPE

15 20 q² [GeV²/c⁴

narrow co

broad c7 resonances

Calculation: Light-Cone OPE

 $4m_c^2 - q^2 \gg \Lambda_{\text{hadr.}}^2$

expansion in operators at light-like
 distances x² ~ 0 (Khodjamirian, Mannel, Pivovarov, Wang 2010)
 employing light-cone expansion of

charm propagator

0 < u < 1

 $\xrightarrow{q^2 \ll 4m_c^2} \underbrace{\left(\frac{C_1}{3} + C_2\right)g(m_c^2, q^2)}_{\text{coeff #1}} [\overline{s}\,\Gamma^{\mu}\,b] + \mathcal{O}\left(\alpha_s\right)$

 $+\,\mathcal{I}^{\mu\alpha\beta\gamma}(q^2)\,[\,\bar{s}_L\gamma_\alpha\tilde{G}_{\beta\gamma}b_L\,]+\mathcal{O}\left(\alpha_{\rm S}\right)$

► subleading coefficient *I* known

[Khodjamirian,Mannel,Pivovarov,Wang '10]

► we confirm result for I: LC expansion apparently breaks Ward identity [Gubernari, DvD, Virto wi.p]

Calculation: Matrix Elements

 $4m_c^2 - q^2 \gg \Lambda_{\text{hadr.}}^2$

► expansion in operators at light-like
 distances x² ≃ 0 (Khodjamirian, Mannel, Pivovarov, Wang 2010)
 ► employing light-cone expansion of

charm propagator

0 < u < 1

matrix elements schematically:

$$egin{aligned} \mathcal{H}_{\lambda} &= oldsymbol{g}(oldsymbol{q}^2) imes \mathcal{F}_{\lambda} + \mathcal{H}^{ ext{spect.}}_{\lambda} \ &+ \mathcal{I} imes \mathcal{F}^{ ext{soft}}_{\lambda} \end{aligned}$$

▶ leading part identical to QCD Fact. results

[Beneke, Feldmann, Seidel '01&'04]

► subleading matrix element $\mathcal{F}_{\lambda}^{\text{soft}}$ can be inferred from *B*-LCSRs [Khodjamirian, Mannel, Pivovarov, Wang 2010]

Calculation: Matrix Elements

 $4m_c^2 - q^2 \gg \Lambda_{hadr.}^2$

expansion in operators at light-like
 distances x² ~ 0 [Khodjamirian, Mannel, Pivovarov, Wang 2010]
 employing light-cone expansion of

- Updating B-LCSR calculation of the matrix element of *F*^{soft} [Gubernari,DvD,Virto w.i.p.]
- ► Ward identity restored in LCSR! [Gubernari, DvD, Virto w.i.p.]
- PRELIMINARY at q² = 1 GeV² we find suppression by a factor of 10 × 20

[Balitsky, Braun 1989]

- ► 10 from updated numerical inputs
- 20 from cancellations between "new" and "old" LCDAs; indep. of inputs

Singularities

- ► previous work only considered singularities of dynamical origin:
 - poles from bound states
 - branch cuts due to two-body thresholds
- ► another type of singularity is of kinematical origin.

will discuss these singularities at hand of a simpler example

Consider two decompositions of the same matrix element

$$\begin{split} K(k) | \,\overline{s} \gamma^{\mu} b \, | B(p) \rangle &\equiv f_{+}(q^{2})(p+k)^{\mu} + \dots \\ &\equiv \left[\frac{\sqrt{\lambda(M_{B}^{2}, M_{K}^{2}, q^{2})}}{4M_{B}^{2}} \right]^{-3} \tilde{f}_{+}(q^{2})(p+k)^{\mu} + \dots \end{split}$$

- ▶ left-hand side stays the same
- ► $\sqrt{\lambda(...)}$ term has singularity of kinematical origin if $\lambda < 0$
- f_+ and \tilde{f}_+ have different properties
 - which is the correct one?

Dispersive bound

Define an two-point correlation function $\Pi_{1^-}(q^2)$

$$\Pi_{1-}(q^2) \equiv P_{\mu\nu} \int e^{iq \cdot x} \langle 0 | \mathcal{T}\{\bar{s}\gamma^{\mu}b(x), \bar{b}\gamma^{\nu}s(0)\} ket0$$

► for suitable $q^2 \ll (m_b + m_s)^2$ one can compute a certain derivative of Π_{1-} :

$$\chi_{1-}(q^2)\Big|_{\text{OPE}} = \left[-\frac{d}{dq^2}\right]^2 q^2 \Pi_{1-}(q^2)\Big|_{\text{OPE}} \propto \int ds \, \frac{s \, \text{Im} \, \Pi_{1-}(s)}{[s-q^2]^4}$$

For any q² < (M_B + M_K)² one can express Π₁− as a dispersive integral:

$$\chi_{1-}(q^2)\Big|_{OPE} \propto \int ds \, \frac{s \, \sqrt{\lambda(s)}^3 |f_+(s)|^2}{[s-q^2]^4}$$

Integral representation

$$\chi_{1-}(q^2)\Big|_{\text{OPE}} \propto \int ds \, \frac{s \sqrt{\lambda(s)^3} |f_+(s)|^2}{[s-q^2]^4}$$

- \blacktriangleright λ enters as combination of two-particle phase space and angular momentum factor
- further terms depend on the type of the current and the number of subtractions in the dispersive integral
- ► the integrand is supposed to be free of singularities
- ► absorb both types of terms into definition of $f_+ \rightarrow F_+$, rendering the integrand analytic
- the power of $[s q^2]$ and the power of $\sqrt{\lambda(s)}$ are fixed:
 - $[s q^2]$ by the perturbative calculation
 - $\sqrt{\lambda(s)}$ by phase space and angular momentum conservation

Resolving the ambiguity

Neither of the previous suggestions was the correct one:

$$\begin{aligned} \langle \mathcal{K}(k) | \, \bar{s} \gamma^{\mu} b \, | \mathcal{B}(p) \rangle &\equiv f_+(q^2)(p+k)^{\mu} + \dots \\ &\equiv \left[\frac{\sqrt{\lambda(M_B^2, M_K^2, q^2)}}{4M_B^2} \right]^{-3} \tilde{f}_+(q^2)(p+k)^{\mu} + \dots \end{aligned}$$

Instead, require

$$\langle K(k) | \bar{s} \gamma^{\mu} b | B(p) \rangle \equiv \left[\frac{\sqrt{\lambda(M_B^2, M_K^2, q^2)}}{4M_B^2} \right]^{-3/2} \mathcal{F}_+(q^2)$$

tasks for the non-local matrix elements:

- need to come up with a dispersive representation of a suitable correlation function!
- determine powers of poles and angular momentum branch cuts

Bounds

We investigate a four-point correlation function of the type

$$\Pi(q^2) \propto \int d^4x \, d^4y \, d^4z \, e^{-iq_1 \cdot x} \, e^{+iq_2 \cdot y} \, e^{-ih_1 \cdot z}$$

$$\langle 0 | \mathcal{T} \left\{ J^{\mu}(x), J^{\nu}(y), O(z), O^{\dagger}(0) \right\} | 0 \rangle \, g_{\mu\nu}$$

- ► incoming momenta q₁ of the e.m. current and h₁ artifically inserted into the four quark operator O
- outgoing momenta q_2 and h_2
- impose $h_1^2 = 0 = h_2^2$
- physical limit is $h_{1,2} \rightarrow 0$

Diagrammatically

$$s \equiv (q_1 + h_1)^2$$
 $t \equiv (q_1 - q_2)^2$ $u \equiv (q_1 - h_2)^2$

- cuts in s are bs̄ cuts ⇒ dispersion relation in s
- ▶ cuts in *t* are flavour-less
- cuts in u are bs, but not independent of s or t cuts

$$\chi(q^2) \propto \left[rac{d}{dq^2}
ight]^n \Pi(q^2) \bigg|_{q^2 o -m_b^2}$$

- after renormalizing Π , $1/\varepsilon$ divergence is analytic in s
- OPE requires n = 3 subtractions to render χ finite

results obtained by applying $large-q^2$ OPE to the time-ordered product

► results dominated by two insertions of dim-3 operators

imaginary part of Π informs the kinematical singularities

- $B \rightarrow K$ and $B \rightarrow K^*$ matrix elements enter with different powers of λ , as expected from total angular momentum
 - $B \rightarrow K$ needs additional angular momentum to create P wave

ightarrow Im $\Pi(s) \propto \lambda(s)^{3/2}$

- ► $B \to K^*$ needs no additional angular momentum to create P wave $\to \operatorname{Im} \Pi(s) \propto \lambda(s)^{1/2}$
- ► previous analysis did not remove kinematical singularities

Ende

Summary / Outlook

- previous parametrization is only the first step toward toward taming systematic uncertainties due to non-local effects
 - ► light-hadron cut explicitly *not yet* included
 - ► singularities due to charmonia and open-charm dynamics included
 - kinematical singularities work in progress
- reanalysis of theory predictions at negative q^2 ongoing
 - ► form factors updated already
 - large cancellations in $\mathcal{F}_{\lambda}^{\mathrm{soft}}$ due to terms missing in original work
 - ► only few terms remains to be cross checked
- calculating dispersive bounds is a necessary step to understand the parametrization
 - ► allows to remove the kinematical singularities
 - ► gives insight into rate of convergence of the parametrization
 - ► provides parametric handle on systematic uncertainties