A path toward establishing or ruling out NP in C_{9}

01.04.2020

Danny van Dyk
based on prelim. work with N. Gubernari and J. Virto
Technische Universität München

Status Quo

[LHCb '20]

Exclusive $b \rightarrow s \ell^{+} \ell^{-}$Amplitudes

$$
\mathcal{A}_{\lambda}=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{\top}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- non-local: $\mathcal{H}_{\lambda}\left(q^{2}\right)=i \mathcal{P}_{\mu}^{\lambda} \int d^{4} x e^{i q \cdot x}\langle\bar{K}(k)| T\left\{\mathcal{J}_{\text {em }}^{\mu}(x), \mathcal{C}_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(q+k)\rangle$
- major source of systematic uncertainty
- several approaches dependent on the phase space region (i.e.: q^{2})
- what are the properties of \mathcal{H}_{λ} as a function of q^{2} ?

Analytic structure of the \mathcal{H} : dynamical singularities

(a)

(b)

Understanding the p^{2} cut

Trick: add spurious momentum h to \mathcal{O}_{i} recover physical kinematics as $h \rightarrow 0$

- consider Mandelstam variables

$$
\begin{array}{rlll}
s & \equiv(p+h)^{2} & \longrightarrow & M_{B}^{2} \\
u & \equiv(k-h)^{2} & \longrightarrow & M_{k^{*}}^{2} \\
t \equiv(q-h)^{2} & & \text { physical point } & q^{2}
\end{array}
$$

- s independent of t
\triangleright cut in $s \sim p^{2}$ does not translate into cut in $t \sim q^{2}$

Understanding the p^{2} cut

Trick: add spurious momentum h to \mathcal{O}_{i} recover physical kinematics as $h \rightarrow 0$

- consider Mandelstam variables

$$
\begin{array}{rll}
s & \equiv(p+h)^{2} & \longrightarrow
\end{array} M_{B}^{2} .
$$

- p^{2} cut does not induce singularities in q^{2} as long as k^{2} is fixed
- two correlators:

$$
\mathcal{H}_{\lambda}\left(q^{2}\right) \rightarrow \mathcal{H}_{\lambda}^{\text {real }}\left(q^{2}\right)+i \mathcal{H}_{\lambda}^{\text {imag }}\left(q^{2}\right)
$$

- s independent of t
\triangleright cut in $s \sim p^{2}$ does not translate into cut in $t \sim q^{2}$
- the same dispersion relation governs their q^{2}-dependence

Light-hadron cut

[sketch from Blake, Gershon, Hiller 1501.03309]
We do not consider the light-hadron cut here or in the following!

- peaks only locally around $\sim 1 \mathrm{GeV}^{2}$
- perturbatively small $\left(\mathcal{O}\left(\alpha_{s}\right)\right)$
- empirically small ($\Gamma(J / \psi))$
- will need to be considered once very precise data become available 5/19

Strategy

[sketch from Blake, Gershon, Hiller 1501.03309]
Parametrize the local matrix elements in the complex half plane with $\operatorname{Re} q^{2}<4 M_{D}^{2}$

- fit to experimental data on narrow charmonium resonances
- fit to theory predictions in Light-Cone OPE region ($\mathcal{O}\left(\alpha_{s}\right)$)
- use in semileptonic region

Basics of the parametrization

$$
\begin{gathered}
q^{2}<0 \\
\cap \quad 0 \leq q^{2} \leq 4 M_{D}^{2} \\
\cap \quad q^{2} \in\left\{M_{J / \psi}^{2}, M_{\psi^{\prime}}^{2}\right\}
\end{gathered}
$$

ansatz in z valid below the $D \bar{D}$ threshold
motivated by "z-parametrization" of form factors

1. Extract the poles:

$$
\hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)=\left(q^{2}-M_{j / \psi}^{2}\right)\left(q^{2}-M_{\psi(2 S)}^{2}\right) \mathcal{H}_{\lambda}\left(q^{2}\right)
$$

2. $\hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)$ still has $D \bar{D}$ cut.
3. perform conformal mapping $q^{2} \mapsto z\left(q^{2}\right)$.
4. branch cut in q^{2} is mapped onto the unit circle in z.
5. $\hat{\mathcal{H}}_{\lambda}(z)$ analytic within unit circle.
6. power expand $\hat{\mathcal{H}}_{\lambda}(z)$ around $z=0$.

Three open questions

Light-Cone OPE What is the size of next-to-leading power terms in the light-cone OPE?

First LCSR calculation of the hadronic matrix elements was incomplete.
[Khodjamirian et al. '10]
Missing terms can have numerically significant impact.
[Kokulu,Gubernari,DvD '18]
Singularities Are there further singularities?
In a previous analysis we only discussed singularities of dynamical origin.
Bounds Is there an upper bound on the size of the z-expansion coefficients?

For form factors we can derive an upper bound through an integral representation of vacuum matrix elements. res

Boyd,Grinstein,Lebed '95]

Light-Cone OPE and Matrix
Elements

Calculation: Light-Cone OPE

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr. }}^{2}
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
- employing light-cone expansion of
 charm propagator
[Balitsky, Braun 1989]

$$
\begin{aligned}
\xrightarrow{q^{2} \ll 4 m_{c}^{2}} & \underbrace{\left(\frac{C_{1}}{3}+C_{2}\right) g\left(m_{c}^{2}, q^{2}\right)}_{\text {coeff \#1 }}\left[\bar{s} \Gamma^{\mu} b\right]+\mathcal{O}\left(\alpha_{S}\right) \\
& +\mathcal{I}^{\mu \alpha \beta \gamma}\left(q^{2}\right)\left[\bar{s}_{L} \gamma_{\alpha} \tilde{G}_{\beta \gamma} b_{L}\right]+\mathcal{O}\left(\alpha_{S}\right)
\end{aligned}
$$

- leading coefficients now known analytically to $\mathcal{O}\left(\alpha_{s}\right)$

$$
0 \leq u \leq 1
$$

Calculation: Light-Cone OPE

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr. }}^{2}
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
- employing light-cone expansion of
 charm propagator
[Balitsky, Braun 1989]

$$
\begin{aligned}
\xrightarrow[q^{2} \ll 4 m_{c}^{2}]{\longrightarrow} & \underbrace{\left(\frac{C_{1}}{3}+C_{2}\right) g\left(m_{c}^{2}, q^{2}\right)}_{\text {coeff } \# 1}\left[\bar{s} \Gamma^{\mu} b\right]+\mathcal{O}\left(\alpha_{S}\right) \\
& +\mathcal{I}^{\mu \alpha \beta \gamma}\left(q^{2}\right)\left[\bar{s}_{L} \gamma_{\alpha} \tilde{G}_{\beta \gamma} b_{L}\right]+\mathcal{O}\left(\alpha_{S}\right)
\end{aligned}
$$

- subleading coefficient \mathcal{I} known
- we confirm result for I: LC expansion apparently breaks Ward identity [Guberarai,pv,v,irito wi.p]

Calculation: Matrix Elements

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr. }}^{2}
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
- employing light-cone expansion of
 charm propagator

matrix elements schematically:

$$
\begin{aligned}
\mathcal{H}_{\lambda} & =g\left(q^{2}\right) \times \mathcal{F}_{\lambda}+\mathcal{H}_{\lambda}^{\text {spect. }} \\
& +\mathcal{I} \times \mathcal{F}_{\lambda}^{\text {soft }}
\end{aligned}
$$

- leading part identical to QCD Fact. results
- subleading matrix element $\mathcal{F}_{\lambda}^{\text {soft }}$ can be inferred from B-LCSRs
[Khodjamirian, Mannel, Pivovarov, Wang 2010]

$$
0 \leq u \leq 1
$$

Calculation: Matrix Elements

$$
4 m_{c}^{2}-q^{2} \gg \Lambda_{\text {hadr. }}^{2}
$$

- expansion in operators at light-like distances $x^{2} \simeq 0$
- employing light-cone expansion of
 charm propagator

$$
0 \leq u \leq 1
$$

- Updating B-LCSR calculation of the matrix element of $\mathcal{F}_{\lambda}^{\text {soft }}$
- Ward identity restored in LCSR! [Gubernari,ovo,vitio wi.p.]
- PRELIMINARY at $q^{2}=1 \mathrm{GeV}^{2}$ we find suppression by a factor of 10×20
- 10 from updated numerical inputs
- 20 from cancellations between "new" and "old" LCDAs; indep. of inputs

Singularities

Ambiguity in definition of matrix elements

- previous work only considered singularities of dynamical origin:
- poles from bound states
- branch cuts due to two-body thresholds
- another type of singularity is of kinematical origin.
will discuss these singularities at hand of a simpler example

Ambiguity in defining the $B \rightarrow K$ vector form factor

Consider two decompositions of the same matrix element

$$
\begin{aligned}
\langle K(k)| \bar{s} \gamma^{\mu} b|B(p)\rangle & \equiv f_{+}\left(q^{2}\right)(p+k)^{\mu}+\ldots \\
& \equiv\left[\frac{\sqrt{\lambda\left(M_{B}^{2}, M_{K}^{2}, q^{2}\right)}}{4 M_{B}^{2}}\right]^{-3} \tilde{f}_{+}\left(q^{2}\right)(p+k)^{\mu}+\ldots
\end{aligned}
$$

- left-hand side stays the same
- $\sqrt{\lambda(\ldots)}$ term has singularity of kinematical origin if $\lambda<0$
- f_{+}and \tilde{f}_{+}have different properties
- which is the correct one?

Dispersive bound

Define an two-point correlation function $\Pi_{1-}\left(q^{2}\right)$

$$
\Pi_{1^{-}}\left(q^{2}\right) \equiv P_{\mu \nu} \int e^{i q \cdot x}\langle 0| \mathcal{T}\left\{\bar{s} \gamma^{\mu} b(x), \bar{b} \gamma^{\nu} s(0)\right\} k e t 0
$$

- for suitable $q^{2} \ll\left(m_{b}+m_{s}\right)^{2}$ one can compute a certain derivative of Π_{1-} :

$$
\left.\chi_{1-}\left(q^{2}\right)\right|_{\mathrm{OPE}}=\left.\left[-\frac{d}{d q^{2}}\right]^{2} q^{2} \Pi_{1-}\left(q^{2}\right)\right|_{\mathrm{OPE}} \propto \int d s \frac{s \operatorname{Im} \Pi_{1-}(s)}{\left[s-q^{2}\right]^{4}}
$$

- for any $q^{2}<\left(M_{B}+M_{K}\right)^{2}$ one can express Π_{1-} as a dispersive integral:

$$
\left.\chi_{1-}\left(q^{2}\right)\right|_{\mathrm{OPE}} \propto \int d s \frac{s \sqrt{\lambda(s)^{3}}\left|f_{+}(s)\right|^{2}}{\left[s-q^{2}\right]^{4}}
$$

Integral representation

$$
\left.\chi_{1-}\left(q^{2}\right)\right|_{\text {OPE }} \propto \int d s \frac{s \sqrt{\lambda(s)^{3}}\left|f_{+}(s)\right|^{2}}{\left[s-q^{2}\right]^{4}}
$$

- λ enters as combination of two-particle phase space and angular momentum factor
- further terms depend on the type of the current and the number of subtractions in the dispersive integral
- the integrand is supposed to be free of singularities
- absorb both types of terms into definition of $f_{+} \rightarrow \mathcal{F}_{+}$, rendering the integrand analytic
- the power of $\left[s-q^{2}\right]$ and the power of $\sqrt{\lambda(s)}$ are fixed:
[$s-q^{2}$] by the perturbative calculation
$\sqrt{\lambda(s)}$ by phase space and angular momentum conservation

Resolving the ambiguity

Neither of the previous suggestions was the correct one:

$$
\begin{aligned}
\langle K(k)| \bar{s} \gamma^{\mu} b|B(p)\rangle & \equiv f_{+}\left(q^{2}\right)(p+k)^{\mu}+\ldots \\
& \equiv\left[\frac{\sqrt{\lambda\left(M_{B}^{2}, M_{K}^{2}, q^{2}\right)}}{4 M_{B}^{2}}\right]^{-3} \tilde{f}_{+}\left(q^{2}\right)(p+k)^{\mu}+\ldots
\end{aligned}
$$

Instead, require

$$
\langle K(k)| \bar{S} \gamma^{\mu} b|B(p)\rangle \equiv\left[\frac{\sqrt{\lambda\left(M_{B}^{2}, M_{K}^{2}, q^{2}\right)}}{4 M_{B}^{2}}\right]^{-3 / 2} \mathcal{F}_{+}\left(q^{2}\right)
$$

tasks for the non-local matrix elements:

- need to come up with a dispersive representation of a suitable correlation function!
- determine powers of poles and angular momentum branch cuts

Bounds

Correlation Function

We investigate a four-point correlation function of the type

$$
\begin{aligned}
& \Pi\left(q^{2}\right) \propto \int d^{4} x d^{4} y d^{4} z e^{-i q_{1} \cdot x} e^{+i q_{2} \cdot y} e^{-i h_{1} \cdot z} \\
&\langle 0| \mathcal{T}\left\{J^{\mu}(x), J^{\nu}(y), O(z), O^{\dagger}(0)\right\}|0\rangle g_{\mu \nu}
\end{aligned}
$$

- incoming momenta q_{1} of the e.m. current and h_{1} artifically inserted into the four quark operator 0
- outgoing momenta q_{2} and h_{2}
- impose $h_{1}^{2}=0=h_{2}^{2}$
- physical limit is $h_{1,2} \rightarrow 0$

Diagrammatically

$$
s \equiv\left(q_{1}+h_{1}\right)^{2} \quad t \equiv\left(q_{1}-q_{2}\right)^{2} \quad u \equiv\left(q_{1}-h_{2}\right)^{2}
$$

- cuts in s are $b \bar{s}$ cuts \Rightarrow dispersion relation in S
- cuts in t are flavour-less
- cuts in u are $b \bar{s}$, but not independent of s or t cuts

Preliminary results

$$
\left.\chi\left(q^{2}\right) \propto\left[\frac{d}{d q^{2}}\right]^{n} \Pi\left(q^{2}\right)\right|_{q^{2} \rightarrow-m_{b}^{2}}
$$

- after renormalizing $\Pi, 1 / \varepsilon$ divergence is analytic in s
- OPE requires $n=3$ subtractions to render χ finite
results obtained by applying large- q^{2} OPE to the time-ordered product
- results dominated by two insertions of dim-3 operators

Preliminary results

imaginary part of Π informs the kinematical singularities

- $B \rightarrow K$ and $B \rightarrow K^{*}$ matrix elements enter with different powers of λ, as expected from total angular momentum
- $B \rightarrow K$ needs additional angular momentum to create P wave

$$
\rightarrow \operatorname{Im} \Pi(s) \propto \lambda(s)^{3 / 2}
$$

- $B \rightarrow K^{*}$ needs no additional angular momentum to create P wave

$$
\rightarrow \operatorname{Im} \Pi(s) \propto \lambda(s)^{1 / 2}
$$

- previous analysis did not remove kinematical singularities

Ende

Summary / Outlook

- previous parametrization is only the first step toward toward taming systematic uncertainties due to non-local effects
- light-hadron cut explicitly not yet included
- singularities due to charmonia and open-charm dynamics included
- kinematical singularities work in progress
- reanalysis of theory predictions at negative q^{2} ongoing
- form factors updated already
- large cancellations in $\mathcal{F}_{\lambda}^{\text {soft }}$ due to terms missing in original work
- only few terms remains to be cross checked
- calculating dispersive bounds is a necessary step to understand the parametrization
- allows to remove the kinematical singularities
- gives insight into rate of convergence of the parametrization
- provides parametric handle on systematic uncertainties

