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Status Quo
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Exclusive b — s¢*t¢~ Amplitudes

» non-local : Ha(q") =iP, /d“x e (K(R)| T{ T4 (%), C:Oi(0) } |B(q + F))
» major source of systematic uncertainty

» several approaches dependent on the phase space region (i.e: ¢°)

» what are the properties of H, as a function of g??
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Analytic structure of the #: dynamical singularities
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Understanding the p? cut

Trick: add spurious momentum h to O;
recover physical kinematics as h — 0

» consider Mandelstam variables
S= (p + h)Z — Mzs Mandelstam plane
u=(k—h)’ — M

- K* physical point

2

t=(q—-hy? —
physical point

» sindependentoft

> cutins ~ p? does not
translate into cutin t ~ g°
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Understanding the p? cut

Trick: add spurious momentum h to O;
recover physical kinematics as h — 0

» consider Mandelstam variables

2 .
s=(p+h? — M > p. cut dggs nlot induce
singularities in g° as long as k?
u=(kR-hy? — M. is fixed
2 » two correlators:

t=(q—-hy? —
physical point

HAG®) = HE (@) +i ()
» sindependentoft
» the same dispersion relation

. , .
> cutins ~ p* does not governs their g2-dependence

translate into cut in t ~ g?
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We do not consider the light-hadron cut here or in the following!

» peaks only locally around ~ 1GeV*
» perturbatively small (O (as))
» empirically small (F(J/¥))

» will need to be considered once very precise data become available 5/



> OPE
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Parametrize the local matrix elements in the complex half plane with
Req? < 4M?

» fit to experimental data on narrow charmonium resonances
» fit to theory predictions in Light-Cone OPE region (O (as))
» use in semileptonic region 6/19



Basics of the parametrization
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N 0<q*<4Mp = ——
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ansatz in z valid below the DD threshold (e ‘ an o
motivated by "z-parametrization” of form factors \ ,, Bourel
1 1. Extract the poles:
o HA(@*) = (@" — Mf/w)(qz - Mi;(ZS))H)\(qz)
0.6
o 2. H(q?) still has DD cut.
0.2
Eoo)n ! 3. perform conformal mapping g2 + z(g?).
—02] H
sl % 4. branch cut in g2 is mapped onto the unit circle in z
—06 E 2 ~
o8 5. Ha(2) analytic within unit circle.

6. power expand ﬁk(z) around z = 0.

-1 -0.8-0.6-04-02 0_ 02 04 06 08 1
Rez
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Three open questions

Light-Cone OPE What is the size of next-to-leading power terms in the
light-cone OPE?

First LCSR calculation of the hadronic matrix elements
was incomplete. odjamirian
Missing terms can have numerically significant |mpact
Kokulu,Gubernari,DvD "1

Singularities Are there further singularities?

In a previous analysis we only discussed singularities of
dynamical origin. Jobeth,Chrzaszcz OVD Virto 17

Bounds Is there an upper bound on the size of the z-expansion
coefficients?

For form factors we can derive an upper bound through
an integral representation of vacuum matrix elements.
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Light-Cone OPE and Matrix
Elements




Calculation: Light-Cone OPE

E,.[GeV] 2 1

4m o C] > /\hadr
QCDF «~ > OPE
procn b,
» expansion in operators at light-like N 1 \\
distances X2 >~ 0 (oo e rov, Wang 2010] LR )
» employing light-cone expansion of S "
charm propagator Balitsky, Bra
q*<tm? C R
\\ /'\ = (; +cz> 9(m2,q%) BT* b] + O (as)
/ \_‘) , coeff #1
+ THeBY(g?) [i“/«v@%«,h] + O (as)
b » leading coefficients now known analytically
AT t0 O (as) S
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Calculation: Light-Cone OPE

E,.[GeV] 2 1

4m o C] > /\hadr
QCDF - > OPE
procn b,
» expansion in operators at light-like o \\
distances X2 >~ 0 (oo e rov, Wang 2010] LR )
» employing light-cone expansion of S "
charm propagator Balitsky, Bra
2 g 4m? C _
\\ /'\ RSN ( ; + cz> g(m2,q%) [T b] + O (as)
/ \_‘) , coeff #1
+ THeBY(g?) [i“/«v@%«,h] + O (as)
b » subleading coefficient Z known
\ ux Khod ‘
0 X~
N » we confirm result for Z: LC expansion

apparently breaks Ward identity rcuserms o wip
0<u< 9/19



Calculation: Matrix Elements

E,.[GeV] 2 1

4m *CI > /\hadr
QCDF - > OPE
procn bome,
» expansion in operators at light-like a \\
. 07-0g s
distances x2 ~ 0 (hodjarmirian, Mannel, Pivovaroy, Wang 2010] s
» employing light-cone expansion of S "

charm propagator Balitsky, Braun 198
matrix elements schematically:

\ ™ )
A Y _ ]_— spec
/ \/ Ha=9(q") x Fa+ H)
+ 7 x F3ot
% » leading part identical to QCD Fact. results
b
3enek eldmann
\0 T » subleading matrix element F5° can be
// -/ inferred from B-LCSRs Khodjamirian, Mannel, Pivovaroy, W
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Calculation: Matrix Elements

E,.[GeV] 2 1
I

4m *CI > /\hadr
QCDF - > OPE
procn bome,
» expansion in operators at light-like a \\
. 07-0g s
distances x2 ~ 0 (hodjarmirian, Mannel, Pivovaroy, Wang 2010] s
» employing light-cone expansion of S "

charm propagator

» Updating B-LCSR calculation of the matrix

\ /\ o element of F35oft bernari VDo wip
/ \*/ » Ward identity restored in LCSR! tcusernarovvito wip
» PRELIMINARY at g2 = 1GeV? we find
suppression by a factor of 10 x 20
iiwizé » 10 from updated numerical inputs
0 X~ » 20 from cancellations between “new” and
/ N “old” LCDAs; indep. of inputs
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Singularities




Ambiguity in definition of matrix elements

» previous work only considered singularities of dynamical origin:

» poles from bound states
» branch cuts due to two-body thresholds

» another type of singularity is of kinematical origin.

will discuss these singularities at hand of a simpler example
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Ambiguity in defining the B — K vector form factor

Consider two decompositions of the same matrix element

(K(R)|5v*b [B(P)) = f+(a”)(p + R} + ...
vz )]
= [%] fo(@®)(p+ R+ ...

» left-hand side stays the same
» /A(...) term has singularity of kinematical origin if A < 0

» f. and f. have different properties
» which is the correct one?
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Dispersive bound

Define an two-point correlation function M;-(g?)

(@) = P [ €9 (0] T(5770(0). By"5(0) Hreto
» for suitable g> < (my + Ms)? one can compute a certain derivative
of I_I1—:
d 1’ s ImMy-
[l [
OPE

oPE [ dg?
» for any g> < (Mg + M)? one can express M- as a dispersive
integral:

/ds\/iﬁ—

OPE
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Integral representation

/ds S/A \f+
OPE

[S _ 2]4

) enters as combination of two-particle phase space and angular

momentum factor

» further terms depend on the type of the current and the number
of subtractions in the dispersive integral

» the integrand is supposed to be free of singularities

» absorb both types of terms into definition of f; — F,, rendering
the integrand analytic

» the power of [s — g”] and the power of \/\(s) are fixed:

[s — g°] by the perturbative calculation

V/A(s) by phase space and angular momentum
conservation

v
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Resolving the ambiguity

Neither of the previous suggestions was the correct one:
(K(R)I5¥"b |B(p)) = f+(a°)(p + k)" + ...

Az, q2)]
[ 4PM§ K] FH@)p+ R+

Instead, require
—3/2

A(Mg, M., 6%)
Y Fi(q*)

(K()|5"b [B(p)) = [ e

tasks for the non-local matrix elements:

» need to come up with a dispersive representation of a suitable
correlation function!
» determine powers of poles and angular momentum branch cuts
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Bounds




Correlation Function

We investigate a four-point correlation function of the type

I'I(q2) o /dL'X déydAZ ef/‘qvx €'+iq‘“y e*”h‘Z

(O T {J(x),J(),0(2), 0" (0)} 10) G

» incoming momenta g; of the e.m. current and hy artifically
inserted into the four quark operator O

» outgoing momenta g, and h;
» impose h? =0=h3
» physical limitis h1, — 0
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Diagrammatically

o, b LY
. = -
‘ s=(q+h) t=(q—-q) u=(q—h)
AC cy
» cutsin s are bs cuts = dispersion relation in
s
c » cutsin t are flavour-less
qu b lqz » cutsin u are bs, but not independent of s or t
cuts
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Preliminary results

@?——m}

» after renormalizing N, 1/e divergence is analytic in s

» OPE requires n = 3 subtractions to render x finite

results obtained by applying large-g? OPE to the time-ordered product

» results dominated by two insertions of dim-3 operators
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Preliminary results

imaginary part of I informs the kinematical singularities

» B — Kand B — K* matrix elements enter with different powers of
A, as expected from total angular momentum

» B — K needs additional angular momentum to create P wave

— ImTI(s) o A(s)*/?
» B — K* needs no additional angular momentum to create P wave

— ImTI(s) o< A(s)"/?

» previous analysis did not remove kinematical singularities
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Ende




Summary / Outlook

» previous parametrization is only the first step toward toward
taming systematic uncertainties due to non-local effects
» light-hadron cut explicitly not yet included
» singularities due to charmonia and open-charm dynamics included
» kinematical singularities work in progress

» reanalysis of theory predictions at negative g* ongoing

» form factors updated already
» large cancellations in F5°" due to terms missing in original work

» only few terms remains to be cross checked

» calculating dispersive bounds is a necessary step to understand
the parametrization
» allows to remove the kinematical singularities
» gives insight into rate of convergence of the parametrization
» provides parametric handle on systematic uncertainties
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