Corroborating measurements

Claudia Cornella and Sam Cunliffe

Beyond the flavour anomalies, IP3 Durham, 01.04.2020

Intro

"Please talk about corroborating measurements for B anomalies"

Our interpretation: answer two questions

- If B anomalies are true NP signals, where else should we see something?
- What can Belle II and LHCb measure?

... and see if there's some common ground.

Experimental tools

Belle II

$$
e e \rightarrow \Upsilon(4 S) \rightarrow B B
$$

$\sqrt{s}=2 \sqrt{7 \times 4} \mathrm{GeV}=10.58 \mathrm{GeV}$
Collision energy known \rightarrow boost to CM.

Full event contained.
Good at missing energy and neutrals ($\left.\gamma, K_{S}^{0}, K_{L}^{0}, \pi^{0}, \nu, \nu \nu\right)$.

LHCb

Collision energy not known precisely.

Abs. luminosity not known precisely*. Significantly more data.

Access to $B_{s}, B_{c}, \Lambda_{b} \ldots$

Misc. facts of interest for Belle II

- Data rate: $\mathbf{1 0}^{\mathbf{9}} \boldsymbol{B B}$ per $\mathbf{a b}^{\mathbf{- 1}} \rightarrow$ Lifetime dataset $\mathbf{5 0} \mathbf{a b}^{\mathbf{- 1}} \rightarrow 2 \times 5 \times 10^{10} B^{\prime}$ s.
- Access to B_{s} is possible but need dedicated runs at $\Upsilon(5 S)$.
- Take any B_{s} projections/predictions from Belle II with a grain of salt.
- Full event reconstruction.
- Flavour tagging.
- $e e \rightarrow \tau \tau$.

Full event interpretation

Theory tools

- These steps are complementary, not unidirectional.
- At each step we can investigate connections with other observables.
- Strength of connections can vary a lot (more or less dependent on theory assumptions).

We would like to be as model independent as possible, without forgetting all the lessons we learnt along the way!

Outline

Goal: identifying corroborating measurements, assuming:

- Almost nothing (B anomalies are there, NP is heavy).
observables in the same partonic transition, $b \rightarrow s \mu \mu$ and $b \rightarrow c \tau \nu$
\rightarrow discriminate the Lorentz structure of NP
- NC and CC anomaly have a common NP origin

$$
b \rightarrow s \nu \nu, b \rightarrow s \tau \tau, \tau / \mu \mathrm{LFV}
$$

- and are connected to the SM flavour hierarchies $(U(2)$ flavour symmetry) relate $b \rightarrow c$ and $b \rightarrow u, b \rightarrow s$ and $b \rightarrow d$
\rightarrow discriminate the flavour structure of NP

Observables in $b \rightarrow s \mu \mu$

$$
\mathscr{L}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[C_{9}(\mu)\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu\right)+C_{10}(\mu)\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)\right]+\ldots
$$

Different observables are complementary in pinning down NP structure.
Fit to $\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)$ and $R_{K}^{(*)}$ only:

[Sumensari @ Implications 2019]

- $C_{9}^{\mu}=-C_{10}^{\mu}: R_{K}=R_{K^{*}}=R_{\phi}=R_{p K}$
- $R_{K} \neq R_{K}^{*} \rightarrow C_{9,10}^{()} \neq 0$

Wishlist: updates on $R_{K^{*}}$ other LFU ratios, e.g. $R_{\phi}, R_{p K}$

Observables in $b \rightarrow c \tau \nu \quad$ [talks by Mark Smith and Rodrigo Alonso]

$$
\begin{aligned}
\mathscr{L}_{\text {eff }}=-2 \sqrt{2} G_{F} V_{c b}\left[\left(1+g_{V_{L}}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)+\right. & g_{V_{R}}\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L}\right)+g_{S_{R}}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\tau}_{R} \nu_{L}\right) \\
& \left.+g_{S_{L}}\left(\bar{c}_{R} b_{L}\right)\left(\bar{\tau}_{R} \nu_{L}\right)+g_{T}\left(\bar{c}_{R} \sigma^{\mu \nu} b_{L}\right)\left(\bar{\tau}_{R} \sigma_{\mu \nu} \nu_{L}\right)\right]
\end{aligned}
$$

Also here, obs. in the same partonic transition give complementary info:

- Angular observables: largely insensitive to V_{L}, powerful probe of S, T

Wishlist: updates on $R_{D^{*}}, R_{J / \Psi}$, ang. obs. in $B \rightarrow D^{(*)} \tau \nu$, other LFU ratios: $R_{D^{+}}, R_{\Lambda_{c}}$

Combined explanation of $b \rightarrow c \tau \nu$ and $b \rightarrow s \mu \mu$

[talks by Gino Isidori and Joe Davighi]
B anomalies fit nicely together in the SMEFT.
Minimal solution with $S U(2)_{L}$ triplet + singlet,

$$
\mathscr{L}=\frac{C_{\ell q}^{(3)}}{\Lambda^{2}}\left(\bar{\ell} \gamma^{\mu} \tau^{a} \ell\right)\left(\bar{q} \gamma^{\mu} \tau^{a} q\right)+\frac{C_{\ell q}^{(1)}}{\Lambda^{2}}\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{q} \gamma^{\mu} q\right)+\frac{C_{\ell e d q}}{\Lambda^{2}}(\bar{\ell} d)(\bar{e} q)
$$

Additional scalar/tensor contributions possible and realised in explicit models (e.g. $U_{1} \sim(3,1)_{2 / 3}$ with couplings to RH fermions).

In this setup: direct matching gives $C_{9}^{\mu}=-C_{10}^{\mu}$
$V_{L}\left(+S_{R}\right)$ solution to $b \rightarrow c \tau \nu$ anomaly large $b \rightarrow s \tau \tau$ generates $\Delta C_{9}^{\text {uni }}$ via RGE mixing
$!b \rightarrow s \nu_{(\tau)} \bar{\nu}_{(\tau)}$ sets tight constraint on $\left|C_{\ell q}^{(3)}-C_{\ell q}^{(1)}\right|$
\rightarrow need to enforce $C_{\ell q}^{(1)} \approx C_{\ell q}^{(3)}$ (automatically satisfied for U_{1})
$B \rightarrow K \nu \nu$

- Assuming SM rate, this will be observed at Belle II
- 10% uncertainty on \mathscr{B} with $50 \mathrm{ab}^{-1}$ PTEP(2019)123C01
- First observation in couple of years (assuming the schedule doesn't drag too much) or a couple of $a b^{-1}$.
- Can form $E_{\text {miss }}^{*}+c p_{\text {miss }}^{*}$ to give a peaking "mass" distribution.

$b \rightarrow s \tau \tau$ and $b \rightarrow s \tau \mu$

Two main consequences:

- Huge enhancement in $b \rightarrow s \tau \tau$ (size driven by $R_{D^{(*)}}$)
- Large $\tau \mu \mathrm{LFV}$ (size driven by $R_{\left.K^{(}\right)}$)

	$C_{\text {ledq }}=0$	$C_{\text {ledq }} \neq 0$	SM	Exp
$B_{s} \rightarrow \tau^{+} \tau^{-}$	10^{-5}	10^{-4}	10^{-7}	$<3.4 \cdot 10^{-3}$
$B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}$	10^{-5}	10^{-4}	$1.2 \cdot 10^{-7}$	$<2.25 \cdot 10^{-3}$
$B_{s} \rightarrow \tau^{ \pm} \mu^{\mp}$	10^{-7}	10^{-6}	-	$<2.1 \cdot 10^{-5}$
$B^{+} \rightarrow K^{+} \tau^{+} \mu^{-}$	10^{-8}	10^{-7}	-	$<1.7 \cdot 10^{-5}$
$\tau \rightarrow \mu \gamma$	-	10^{-9}	-	$<3.0 \cdot 10^{-8}$
$\tau \rightarrow \mu \phi$	10^{-11}	10^{-11}	-	$<5.1 \cdot 10^{-8}$

$B \rightarrow K \tau \tau$

- Only Babar has published: PRL.118.031802.
- Belle search is in preparation (but expect a similar sensitivity)
- Belle II can't see SM with $50 \mathrm{ab}^{-1}$, we can get to $\mathbf{1 0}^{\mathbf{- 5}}$

PTEP(2019)123C01

Observables	Belle $0.71 \mathrm{ab}^{-1}$ $\left(0.12 \mathrm{ab}^{-1}\right)$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \cdot 10^{5}$	<32	<6.5	<2.0
$\operatorname{Br}\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right) \cdot 10^{5}$	<140	<30	<9.6
$\operatorname{Br}\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right) \cdot 10^{4}$	<70	<8.1	-
$\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{ \pm} e^{\mp}\right) \cdot 10^{6}$	-	-	<2.1
$\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{ \pm} \mu^{\mp}\right) \cdot 10^{6}$	-	-	<3.3
$\operatorname{Br}\left(B^{0} \rightarrow \tau^{ \pm} e^{\mp}\right) \cdot 10^{6}$	-	-	<1.6
$\operatorname{Br}\left(B^{0} \rightarrow \tau^{ \pm} \mu^{\mp}\right) \cdot 10^{6}$	-	-	<1.3

Probing $B \rightarrow K \tau \tau$ in $B \rightarrow K \mu \mu$

EW loop, but room for large NP in $b \rightarrow s \tau \tau$.
Non-local effect, distinct from $O_{9}^{\mu}-O_{9}^{\tau}$ mixing.

Unique imprint on the $B \rightarrow K \mu \mu$ dimuon spectrum:

- cusp at $\tau \tau$ threshold
- q^{2}-distortion above/below
\rightarrow model independent extraction of $C_{9}^{\tau}!$

Sensitivity
@ LHCb:

$$
\begin{aligned}
\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) & <2.7 \cdot 10^{-3} & & \text { Run I-II } \\
& <1.5 \cdot 10^{-4} & & \text { LHCb upgrade II }
\end{aligned}
$$

$\tau \rightarrow \mu \gamma$

- Can use event shape variables to get relatively clean tau event selection.
- Still "tagging", but more efficient
- Beam background is potential issue
- Belle \& BaBar published

$$
\mathscr{B}(\tau \rightarrow \mu \gamma)<4 \cdot \mathbf{1 0}^{-\mathbf{8}}
$$

PRL104(2010)021802 Phys.Lett.B666(2008)

- Belle Il can improve by factor ~ 2 c.f. Belle per ab ${ }^{-1}$

PTEP(2019)123C01

$\tau \rightarrow \mu \gamma$

B anomalies and SM hierarchies

Combined explanation requires NP with a non-trivial flavour structure: large couplings to 3 rd gen., smaller couplings to light families.

This resembles the SM Yukawa couplings!
2 Is there an underlying flavour symmetry? Can we test it?

Flavour hierarchies and anomalies can be described by a [minimally broken] $U(2)^{5}$ flavour symmetry!

Theoretically fascinating [more in Gino Isidori's talk]
Experimentally testable: equipping EFT with flavour symmetry \& breaking terms leads to testable predictions, both in CC and NC.

$U(2)^{5}$ symmetry \& breaking terms

The Yukawa couplings in the SM respect an approximate

$$
U(2)^{5}=U(2)_{q} \times U(2)_{\ell} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}
$$

minimally broken to recover SM mass matrices:

$$
Y_{u, d, e}=y_{t, b, \tau}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) U(2)_{q, \ell} \quad Y_{u, d, e}=y_{t, b, \tau}\left(\begin{array}{cc}
\Delta_{u, d, e} & V_{q, \ell} \\
0 & 1
\end{array}\right)_{\left|\Delta_{u, d, e}\right| \sim y_{c, s, \mu}}^{\left|V_{q}\right| \sim V_{c b}}
$$

Unbroken symmetry

Minimally broken symmetry

Idea: NP Lagrangian respects the same symmetry, broken only by $V_{q, \ell}$
This gives a good fit to B anomalies for $\left|V_{q, \ell}\right| \sim \mathcal{O}\left(10^{-1}\right)$

SMEFT $+U(2)^{5}$

Taking (semileptonic) SMEFT + minimally broken $U(2)^{5}$, few operators survive:

$$
\mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V} \Lambda_{V}^{[i j \alpha \beta]}\left(\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}\right)^{[i j \alpha \beta]}+\left(2 C_{S} \Lambda_{S}^{[i j \alpha \beta]} \mathcal{O}_{\ell e d q}^{[i j \alpha \beta]}+\text { h.c. }\right)\right]
$$

NP parameters: C_{V}, C_{S} [NP strength] $\quad \Lambda_{V}=\Gamma_{L}^{\dagger} \times \Gamma_{L}, \Lambda_{S}=\Gamma_{L}^{\dagger} \times \Gamma_{R}$ [Flavor structure]

- $U_{1} \sim(3,1)_{\frac{2}{3}}$ is the only single mediator with one to one matching to this structure
- $S_{1}+S_{3}$ also works, with $C_{S}=0$

At lowest order in the symmetry breaking terms $\left(V_{q, \ell}\right)$,

$$
\left.\begin{array}{rlr}
\ell_{1} & \ell_{2} & \ell_{3} \\
\Gamma_{L} \approx & \left.\begin{array}{ccc}
0 & 0 & \frac{V_{b}^{*}}{V_{t s}^{*}} \lambda_{q}^{s} \\
0 & \Delta_{q \ell}^{s \mu} & \lambda_{q}^{s} \\
0 & \lambda_{\ell}^{\mu} & 1
\end{array}\right) & q_{1} \\
q_{2} & \lambda_{q}^{s}, \lambda_{\ell}^{\mu} \sim O\left(10^{-1}\right) & e_{R} \\
q_{3} & \mu_{R} & \tau_{R} \\
q \mu
\end{array}\right) \quad \Gamma_{R} \approx\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\frac{m_{b}}{m_{s}} s_{b} \\
0 & -\frac{m_{\mu}}{m_{\tau}} s_{b} & 1
\end{array}\right) \begin{gathered}
d_{R} \\
s_{R} \\
b_{R}
\end{gathered}
$$

Testing the $U(2)^{5}$ ansatz

$b \rightarrow c$ and $b \rightarrow u, b \rightarrow s$ and $b \rightarrow d$ transitions are connected, because they depend on the same breaking term!

$$
\begin{array}{cr}
\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}=\left.\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}\right|_{\mathrm{SM}} & \frac{b \rightarrow s \ell l}{b \rightarrow d \ell \ell}=\left.\frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}\right|_{\mathrm{SM}} \\
\frac{R_{\pi}^{(*)}}{R_{\pi}^{S M}} \approx 0.75 \frac{R_{D}}{R_{D}^{\mathrm{SM}}+0.25 \frac{R_{D^{*}}}{R_{D^{*}}^{S M}}} & R_{K} \approx R_{K^{*}} \approx \frac{\mathscr{B}(B \rightarrow \pi \mu \bar{\mu})}{\mathscr{B}(B \rightarrow \pi \ell \bar{e})} \\
\frac{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} \approx \frac{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} & \frac{\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)}{\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}} \approx \frac{\mathscr{B}\left(B_{d} \rightarrow \mu \mu\right)}{\mathscr{B}\left(B_{d} \rightarrow \mu \mu\right)_{\mathrm{SM}}} \\
{ }^{{ }^{(*)} R_{\pi} \equiv \frac{\mathscr{B}(B \rightarrow \pi \tau \nu)}{\mathscr{B}(B \rightarrow \pi \ell \nu)}} & \text { [see talk by Aleksey Rusov] }
\end{array}
$$

$$
B \rightarrow \pi \ell \nu
$$

$$
B \rightarrow \pi \ell \ell
$$

- Belle has set a limit

$$
\mathscr{B}(B \rightarrow \pi \tau \nu)<2.5 \cdot 10^{-4}
$$

Phys.Rev.D93(2016)032007

- Ratio $\frac{\mathscr{B}(B \rightarrow \pi \tau \nu)}{\mathscr{B}(B \rightarrow \pi \ell \nu)}$
- At Belle II with a few ab^{-1} can measure the ratio to 30%
- Full $50 \mathrm{ab}^{-1}$ can get to 10%

PTEP(2019)123C01

- LHCb has observed $B \rightarrow \pi \mu \mu$

JHEP10(2015)034

- According to the upgrade note, LHCb needs $300 \mathrm{fb}^{-1}$ to be able to form

$$
\frac{\mathscr{B}(B \rightarrow \pi \mu \bar{\mu})}{\mathscr{B}(B \rightarrow \pi e \bar{e})}
$$

- Very rough and unofficial number puts Belle II at $\sim 300 B \rightarrow \pi \ell \ell$ events in $50 \mathrm{ab}^{-1}$....looks like we could measure that ratio too.

Probing flavour at high $-p_{T}$

" traditional" flavour searches

flavour searches at high- p_{T}

- are complementary: test the same underlying NP in different kin. regimes
- can compete:

High- p_{T} vs low energy

Low energy	High - PT	How well does high-Pt?
$b \rightarrow s \mu \mu$	$p p \rightarrow \mu \mu$	11 [Unless large couplings to valence quarks] [Greljo et al, Eur.Phys.J.C 77 (2017) 8, 548]
$b \rightarrow s \tau \mu$	$p p \rightarrow \tau \mu$	[Angelescu et al., 2002.05684]
$b \rightarrow c \tau \nu$	$p p \rightarrow \tau \nu$	II. [Greljo at al.,1811.07920]
$b \rightarrow s \tau \tau$	$p p \rightarrow \tau \tau$	II) [Faroughy et al., 1609.07138] [Fuentes-Martin et al., 2003.12421]

Conclusions

- $B \rightarrow K \tau \tau$ is cool.
- Nice interplay between experiments:
- direct @ Belle II
- vs. indirect @ LHCb via $\boldsymbol{B} \rightarrow \boldsymbol{K} \boldsymbol{\mu} \boldsymbol{\mu}$,
- vs. bounds from high pt.
- Discussion point: could LHCb do $\boldsymbol{B} \rightarrow \boldsymbol{K}^{(*)} \boldsymbol{\tau} \boldsymbol{\tau}$ directly?
- Do you prefer the $K^{* 0}$ for the $K \pi$ vertex? Should be equally interesting.
$-\boldsymbol{B}_{s} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$is also cool. Will there be an update?
- If we allow [min. broken] $\boldsymbol{U}(\mathbf{2})^{\mathbf{5}}$ symmetry, then we also expect corroboration from $\boldsymbol{B} \rightarrow \boldsymbol{\pi} \tau \nu$ and $\boldsymbol{B} \rightarrow \boldsymbol{\pi} \boldsymbol{\ell} \boldsymbol{\ell}$.
- Maybe some fun competition Belle II vs. LHCb regarding $\boldsymbol{R}_{\boldsymbol{\pi}}$.
- LFU ratios and $b \rightarrow c \tau \nu$ measurements are also corroborating!
- Didn't focus on them because of previous talk, and the session tomorrow.
- To be discussed then?

	th.	LHCb	B2		th.	L-HCb	B2		th.	LHCb	B2
$\mathrm{b} \rightarrow$ spu only				Combined				$\mathrm{b} \rightarrow$ ctv only			
$\mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}}{ }^{*}$	**	$\checkmark^{* *}$	**	$B \rightarrow K$ tt	**	?	**	$\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*}}$	**	\checkmark *	**
R_{φ}	**	*	x	$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{TT}$	**	?		$\mathrm{R}_{\text {^c }}$	**		x
R_{pK}	*	*	X	$B \rightarrow K \tau \mu$	**	\checkmark *	*	$\mathrm{R}_{\mathrm{J} / \psi}$	**	\checkmark	
$B \rightarrow K \mu \mu$	*	$\checkmark^{* *}$	**	$B_{s} \rightarrow T \mu$	**	U*		$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{TV}$	**	?	x
$B_{s} \rightarrow \mu \mu$	**	$\checkmark * *$		$\mathrm{B} \rightarrow \mathrm{Kvv}$	**	x	**	B \rightarrow DTv (angular)	**		**
				$\mathrm{T} \rightarrow \mu \mathrm{Y}$	**		**				
$p p \rightarrow \mu \mu$	*	[high p_{T}]		$p p \rightarrow T \mu$	*	[high p_{T}]		$\mathrm{pp} \rightarrow \mathrm{TV}$	**	[high p_{T}]	
$\mathrm{b} \rightarrow \mathrm{d} \mu \mu$ only								$\mathrm{b} \rightarrow$ div only		?	
								$B[\mathrm{~B} \rightarrow \pi \mathrm{TV}]$	*		**
$\mathrm{R}_{\text {п }}$	*	U *	*	$\mathrm{B} \rightarrow \pi \mathrm{TT}$	*			$B[\mathrm{~B} \rightarrow \pi \mu \mathrm{~V}]$			
$B_{d} \rightarrow \mu \mu$	*	$\checkmark^{* *}$	**	$\mathrm{B} \rightarrow \pi \mathrm{vv}$	*			$B\left[\Lambda_{\mathrm{b}} \rightarrow \mathrm{pTv}\right]$	*		x
				$\mathrm{B} \rightarrow \pi \mathrm{T} \mu$	*			$B\left[\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu \mathrm{v}\right]$			
								$\begin{aligned} & B\left[\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~K}^{*} \mathrm{Tv}\right] \\ & B\left[\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~K}^{*} \mu \mathrm{v}\right] \end{aligned}$	*		x

Key:

\checkmark	paper exists
U	need upgrade [LHCb-PUB-2018-009]
x	cannot be done
$?$	I wasn't sure

Backup

Full event interpretation

- $\quad \mathrm{Y}(4 \mathrm{~S}) \rightarrow$ BB events can be split.
- "Tag" side object reconstructed from generic B decays.
- Train a fast BDT to return a tag candidate and probability.
- Trade-off: constraint + purity vs. efficiency.
- Can have a fully constrained hadronic decay, but take a hit in efficiency.
- This isn't new: was done at Belle (BaBar did something similar). Improvements due to speed + adding generic decay modes.
$\mathrm{B}^{ \pm}(\%) \quad \mathrm{B}^{0}(\%)$

Hadronic

FEI	0.76	0.46
FEl w/ Belle channels	0.53	0.33
Belle	0.28	0.18
BaBar Semileptonic	0.4	0.2
FEI	1.08	2.04
Belle	0.31	0.34
BaBar	0.3	0.6

Belle II status

Taking data right now!
2018: $0.5 \mathrm{fb}^{-1}$
w/o vertex detector.

2019: $10 \mathrm{fb}^{-1}$.
2020: $\sim 3 \mathrm{fb}^{-1}$ so far!
2 ± 1 papers on 2018 data. \#0 ChinPhys.C41021001. \#1/2 is arXiv:1912.11276. \#2/2 is < a little delayed >.

More details about the FEI

More details about $B \rightarrow K \nu \bar{\nu}$ and friends

Observables	Belle $0.71 \mathrm{ab}^{-1}$ $\left(0.12 \mathrm{ab}^{-1}\right)$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)$	$<450 \%$	30%	11%
$\operatorname{Br}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	$<180 \%$	26%	9.6%
$\operatorname{Br}\left(B^{+} \rightarrow K^{*+} \nu \bar{\nu}\right)$	$<420 \%$	25%	9.3%
$F_{\mathrm{L}}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)$	-	-	0.079
$F_{\mathrm{L}}\left(B^{+} \rightarrow K^{*+} \nu \bar{\nu}\right)$	-	-	0.077
$\operatorname{Br}\left(B^{0} \rightarrow \nu \bar{\nu}\right) \times 10^{6}$	<14	<5.0	<1.5
$\operatorname{Br}\left(B_{s} \rightarrow \nu \bar{\nu}\right) \times 10^{5}$	<9.7	<1.1	-

ATLAS and CMS LQ searches

- Most recent limits are 2016 data $\boldsymbol{\sim} \mathbf{3 6} \mathbf{~ f b}^{\mathbf{- 1}}$
- CMS is Eur.Phys.J.C78(2018)707 (s), Phys.Rev.D. 98.032005 (v)
- ATLAS JHEP06(2019)144.
- (c.f. $137 \mathrm{fb}^{-1}$ that they have 2016-18).
- Search for, eg. $2 \tau+2 b$ jets.
- Excluded up to $\boldsymbol{\sim} \mathbf{1 4 0 0} \mathbf{G e V} / \boldsymbol{c}^{\mathbf{2}}$

$K^{+} \rightarrow \pi^{+} \nu \bar{\nu} @$ NA62

- Buras et al say $(9.11 \pm 0.72) \cdot 10^{-11}$ JHEP11(2015)33.
- NA62 performed a first search w/ combined 2016 \& 17 dataset. Limit is at $18.5 \cdot 10^{-11}$ Phys.Lett.B791(2019)156.
- They talk in terms of a "Single Event Sensitivity", SES := $1 /\left(N_{K}, \varepsilon_{\pi v v}\right)$
- Nice way to think about it. Express sensitivity in a FoM.
- Leading order effect is how well they know the acceptance.

Testing $U(2)^{5}$

$$
\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}=\left.\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}\right|_{\mathrm{SM}}
$$

$$
\frac{b \rightarrow \operatorname{sl} \ell}{b \rightarrow d \ell \ell}=\left.\frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}\right|_{\mathrm{SM}}
$$

