Corroborating measurements

Claudia Cornella and Sam Cunliffe

Beyond the flavour anomalies, IP³ Durham, 01.04.2020

Intro

"Please talk about corroborating measurements for B anomalies"

Our interpretation: answer two questions

- If B anomalies are true NP signals, where else should we see something?
- What can Belle II and LHCb measure?

...and see if there's some common ground.

Experimental tools

$$\sqrt{s} = 2\sqrt{7 \times 4} \text{ GeV} = 10.58 \text{ GeV}$$

Collision energy known \rightarrow boost to CM.

Full event contained.

Good at missing energy and neutrals (γ , K_S^0 , K_L^0 , π^0 , ν , $\nu\nu$).

Collision energy not known precisely.

Abs. luminosity not known precisely*. Significantly more data.

Access to B_s, B_c, Λ_b

Misc. facts of interest for Belle II

- Data rate: $10^9 BB$ per $ab^{-1} \rightarrow Lifetime$ dataset $50 ab^{-1} \rightarrow 2 \times 5 \times 10^{10} B$'s.
- Access to B_s is possible but need dedicated runs at $\Upsilon(5S)$.
- Take any B_s projections/predictions from Belle II with a grain of salt.

Full event interpretation

Theory tools

- These steps are complementary, not unidirectional.
- At each step we can investigate connections with other observables.
- Strength of connections can vary a lot (more or less dependent on theory assumptions).

We would like to be as model independent as possible, without forgetting all the lessons we learnt along the way!

Outline

Goal: identifying corroborating measurements, assuming:

• Almost nothing (B anomalies are there, NP is heavy).

observables in the same partonic transition, $b \rightarrow s\mu\mu$ and $b \rightarrow c\tau\nu$

 \rightarrow discriminate the Lorentz structure of NP

• NC and CC anomaly have a common NP origin

 $b \rightarrow s \nu \nu, b \rightarrow s \tau \tau, \tau / \mu \, \text{LFV}$

• and are connected to the SM flavour hierarchies (U(2) flavour symmetry)

relate $b \to c$ and $b \to u$, $b \to s$ and $b \to d$

 \rightarrow discriminate the flavour structure of NP

Observables in $b \rightarrow s \mu \mu$

[see talks by <u>Paula Alvarez Cartelle and Francesco</u> <u>Polci</u>, <u>Peter Stangl and Sébastien Descotes-Genon</u>]

$$\mathscr{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[C_9(\mu) \left(\bar{s}_L \gamma^\mu b_L \right) (\bar{\mu} \gamma_\mu \mu) + C_{10}(\mu) \left(\bar{s}_L \gamma^\mu b_L \right) (\bar{\mu} \gamma_\mu \gamma_5 \mu) \right] + \dots$$

Different observables are complementary in pinning down NP structure.

Fit to $\mathscr{B}(B_s \to \mu\mu)$ and $R_K^{(*)}$ only:

• $C_9^{\mu} = -C_{10}^{\mu}$: $R_K = R_{K^*} = R_{\phi} = R_{pK}$

•
$$R_K \neq R_K^* \rightarrow C_{9,10}^{(\prime)} \neq 0$$

Wishlist: updates on R_{K^*} other LFU ratios, e.g. R_{ϕ}, R_{pK} Observables in $b \rightarrow c \tau \nu$

$$\begin{aligned} \mathscr{L}_{\text{eff}} &= -2\sqrt{2}G_{F}V_{cb} \left[(1+g_{V_{L}})(\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\tau}_{L}\gamma_{\mu}\nu_{L}) + g_{V_{R}}(\bar{c}_{R}\gamma^{\mu}b_{R})(\bar{\tau}_{L}\gamma_{\mu}\nu_{L}) + g_{S_{R}}(\bar{c}_{L}b_{R})(\bar{\tau}_{R}\nu_{L}) \\ &+ g_{S_{L}}(\bar{c}_{R}b_{L})(\bar{\tau}_{R}\nu_{L}) + g_{T}(\bar{c}_{R}\sigma^{\mu\nu}b_{L})(\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{L}) \right] \end{aligned}$$

Also here, obs. in the same partonic transition give complementary info:

• NP in LFU ratios:
•
$$V_L$$
 only $\Delta R_D = \Delta R_D^*$ (= $\Delta R_{J/\Psi}$ =

$$S, I \neq 0 \qquad \Delta K_D \neq \Delta K_{D^*}$$

10

• Angular observables: largely insensitive to V_L , powerful probe of S, T

A D

 ΔR_{Λ})

Wishlist: updates on $R_{D^*}, R_{J/\Psi}$, ang. obs. in $B \to D^{(*)}\tau\nu$, other LFU ratios: R_{D^+}, R_{Λ_c}

Combined explanation of $b \rightarrow c \tau \nu$ and $b \rightarrow s \mu \mu$

[talks by Gino Isidori and Joe Davighi]

B anomalies fit nicely together in the SMEFT.

Minimal solution with $SU(2)_L$ triplet + singlet,

$$\mathcal{L} = \frac{C_{\ell q}^{(3)}}{\Lambda^2} (\bar{\ell} \gamma^\mu \tau^a \ell) (\bar{q} \gamma^\mu \tau^a q) + \frac{C_{\ell q}^{(1)}}{\Lambda^2} (\bar{\ell} \gamma^\mu \ell) (\bar{q} \gamma^\mu q) + \frac{C_{\ell e d q}}{\Lambda^2} (\bar{\ell} d) (\bar{e} q)$$

Additional scalar/tensor contributions possible and realised in explicit models (e.g. $U_1 \sim (3,1)_{2/3}$ with couplings to RH fermions).

In this setup:

direct matching gives C^μ₉ = − C^μ₁₀
 V_L (+ S_R) solution to b → cτν anomaly
 large b → sττ generates ΔC^{uni}₉ via RGE mixing

$$b \to s\nu_{(\tau)}\bar{\nu}_{(\tau)} \text{ sets tight constraint on } |C^{(3)}_{\ell q} - C^{(1)}_{\ell q}| \to \text{need to enforce } C^{(1)}_{\ell q} \approx C^{(3)}_{\ell q} \text{ (automatically satisfied for } U_1\text{)}$$

$B \rightarrow K \nu \nu$

- Assuming SM rate, this will be observed at Belle II
- 10% uncertainty on *B* with 50 ab⁻¹
 <u>PTEP(2019)123C01</u>
- First observation in couple of years (assuming the schedule doesn't drag too much) or a couple of ab⁻¹.
- Can form $E^*_{\text{miss}} + cp^*_{\text{miss}}$ to give a peaking "mass" distribution.

$$b \rightarrow s \tau \tau$$
 and $b \rightarrow s \tau \mu$

Two main consequences:

- Huge enhancement in $b \to s\tau\tau$ (size driven by $R_{D^{(*)}}$)
- Large $\tau \mu \text{ LFV}$ (size driven by $R_{K^{(*)}}$)

		$C_{\ell e d q} = 0$	$C_{\ell edq} \neq 0$	SM	Exp
B _s	$\rightarrow \tau^+ \tau^-$	10 ⁻⁵	10 ⁻⁴	10 ⁻⁷	$< 3.4 \cdot 10^{-3}$
B ⁺	$\rightarrow K^+ \tau^+ \tau^-$	10 ⁻⁵	10 ⁻⁴	$1.2 \cdot 10^{-7}$	$< 2.25 \cdot 10^{-3}$
B	$\to \tau^{\pm}\mu^{\mp}$	10 ⁻⁷	10 ⁻⁶	-	$< 2.1 \cdot 10^{-5}$
B ⁺ -	$\rightarrow K^+ \tau^+ \mu^-$	10 ⁻⁸	10 ⁻⁷	-	$< 1.7 \cdot 10^{-5}$
τ	$\rightarrow \mu \gamma$	-	10 ⁻⁹	-	$< 3.0 \cdot 10^{-8}$
τ	$\rightarrow \mu \phi$	10 ⁻¹¹	10 ⁻¹¹	-	$< 5.1 \cdot 10^{-8}$

$B\to K\tau\tau$

- Only Babar has published: <u>PRL.118.031802</u>.
- Belle search is in preparation (but expect a similar sensitivity)

•	Belle II can't see SM
	with 50 ab^{-1} , we can
	get to 10^{-5}

PTEP(2019)123C01

Observables	Belle 0.71 ab^{-1}	Belle II	Belle II
	$(0.12 \mathrm{ab}^{-1})$	5 ab^{-1}	50ab^{-1}
$\operatorname{Br}(B^+ \to K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
${ m Br}(B^0 o au^+ au^-) \cdot 10^5$	< 140	< 30	< 9.6
$Br(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 70	< 8.1	
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$			< 2.1
$\operatorname{Br}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \cdot 10^6$			< 3.3
$\operatorname{Br}(B^0 \to \tau^{\pm} e^{\mp}) \cdot 10^6$			< 1.6
$Br(B^0 \to \tau^{\pm} \mu^{\mp}) \cdot 10^6$			< 1.3

Probing $B \to K \tau \tau$ in $B \to K \mu \mu$

r E

EW loop, <u>but</u> room for large NP in $b \rightarrow s\tau\tau$. Non-local effect, distinct from $O_9^{\mu} - O_9^{\tau}$ mixing.

[CC et al., 2001.04470]

...competitive with direct bound!

- Can use event shape variables to get relatively clean tau event selection.
 - Still "tagging", but more efficient
 - Beam background is potential issue

 $\tau
ightarrow \mu \gamma$

B anomalies and **SM** hierarchies

Combined explanation requires NP with a non-trivial flavour structure: large couplings to 3rd gen., smaller couplings to light families.

This resembles the SM Yukawa couplings!

Is there an underlying flavour symmetry? Can we test it?

Flavour hierarchies <u>and</u> anomalies can be described by a [minimally broken] $U(2)^5$ flavour symmetry!

Theoretically fascinating [more in Gino Isidori's talk]

Experimentally testable: equipping EFT with flavour symmetry & breaking terms leads to testable predictions, both in CC and NC.

$U(2)^5$ symmetry & breaking terms

[Barbieri et al., Eur. Phys. J.C 71 (2011) 1725]

The Yukawa couplings in the SM respect an approximate

$$U(2)^{5} = U(2)_{q} \times U(2)_{\ell} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e},$$

minimally broken to recover SM mass matrices:

$$Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} U^{(2)}_{q,\ell} \qquad Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} \Delta_{u,d,e} & V_{q,\ell} \\ 0 & 1 \end{pmatrix} \begin{vmatrix} V_q \\ |\Delta_{u,d,e} \\ | \\ - y_{c,s,\mu} \end{vmatrix}$$
Unbroken symmetry
Minimally broken symmetry

Idea: NP Lagrangian respects the same symmetry, broken only by $V_{q,\ell}$ This gives a good fit to B anomalies for $|V_{q,\ell}| \sim O(10^{-1})$

SMEFT + $U(2)^5$ [Fuentes-Martín et al., Phys.Lett.B 800 (2020) 135080]

Taking (semileptonic) SMEFT + minimally broken $U(2)^5$, few operators survive:

$$\mathcal{L}_{\rm EFT} \supset \mathcal{L}_{\rm SM} - \frac{1}{v^2} \left[C_V \Lambda_V^{[ij\alpha\beta]} \left(\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right)^{[ij\alpha\beta]} + \left(2 \, C_S \, \Lambda_S^{[ij\alpha\beta]} \, \mathcal{O}_{\ell edq}^{[ij\alpha\beta]} + {\rm h.c.} \right) \right]$$

NP parameters: C_V , C_S [NP strength] $\Lambda_V = \Gamma_L^{\dagger} \times \Gamma_L$, $\Lambda_S = \Gamma_L^{\dagger} \times \Gamma_R$ [Flavor structure]

- $U_1 \sim (3,1)_{\frac{2}{3}}$ is the only single mediator with one to one matching to this structure
- $S_1 + S_3$ also works, with $C_S = 0$

At lowest order in the symmetry breaking terms ($V_{q,\ell}$),

$$\begin{split} \ell_{1} \ \ell_{2} \ \ell_{3} & e_{R} \ \mu_{R} \ \tau_{R} \\ \\ \left(\begin{array}{cccc} 0 & 0 & \frac{V_{tb}^{*}}{V_{ts}^{*}} \lambda_{q}^{s} \\ 0 & \Delta_{q\ell}^{s\mu} & \lambda_{q}^{s} \\ 0 & \lambda_{\ell}^{\mu} & 1 \end{array} \right) \ q_{1} & \lambda_{q}^{s}, \lambda_{\ell}^{\mu} \sim O(10^{-1}) \\ q_{2} & & \Gamma_{R} \approx \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\frac{m_{b}}{m_{s}} s_{b} \\ 0 & -\frac{m_{\mu}}{m_{\tau}} s_{b} \end{array} \right) \ d_{R} \\ s_{R} \\ b_{R} \end{split}$$

Testing the $U(2)^5$ ansatz

 $b \rightarrow c$ and $b \rightarrow u$, $b \rightarrow s$ and $b \rightarrow d$ transitions are connected, because they depend on the same breaking term!

[see talk by Aleksey Rusov]

 $^{(*)}R_{\pi} \equiv \frac{\mathscr{B}(B \to \pi \tau \nu)}{\mathscr{B}(B \to \pi \ell \nu)}$

$$B \to \pi \ell \nu$$

Belle has set a limit

 $\mathscr{B}(B \to \pi \tau \nu) < 2.5 \cdot 10^{-4}$

Phys.Rev.D93(2016)032007

- Ratio $\mathcal{B}(B \to \pi \tau \nu)$ $\mathcal{B}(B \to \pi \ell \nu)$
- At Belle II with a few ab^{-1} can measure the ratio to 30%
- Full 50 ab⁻¹ can get to 10 %
 <u>PTEP(2019)123C01</u>

$B \to \pi \ell \ell$

• LHCb has observed $B \rightarrow \pi \mu \mu$

JHEP10(2015)034

- According to the upgrade note, LHCb needs $300 \ fb^{-1}$ to be able to form

$$\frac{\mathscr{B}(B \to \pi \mu \bar{\mu})}{\mathscr{B}(B \to \pi e \bar{e})}$$

• Very rough and unofficial number puts Belle II at ~ $300 \ B \rightarrow \pi \ell \ell$ events in 50 ab^{-1} looks like we could measure that ratio too.

Probing flavour at high- p_T

" traditional" flavour searches

flavour searches at high- p_T

- are complementary: test the same underlying NP in different kin. regimes
- can compete:

e.g. in
$$pp \to \ell \nu$$

PDF suppression
 $\mathscr{O}(10^{-5})$ for bc
 $\mathscr{U}_{ij} \times |V_{ij}|^2 \times \left(\frac{M_W^2}{\hat{s}} - \epsilon_L\right)^2$
 $\mathscr{U}_{u\bar{d}+d\bar{u}} \times |V_{ud}|^2 \times \left(\frac{M_W^2}{\hat{s}}\right)^2$
 $(\hat{s}/M_W^2)^2 \sim \mathscr{O}(10^5)$

[Javier Fuentes-Martin @ CAFPE 2019]

High- p_T vs low energy

Low energy	High - PT	How well does high-Pr?
$b \rightarrow s \mu \mu$	$pp \rightarrow \mu \mu$	[Unless large couplings to valence quarks] [Greljo et al, <u>Eur.Phys.J.C 77 (2017) 8, 548]</u>
$b \rightarrow s \tau \mu$	$pp \rightarrow \tau \mu$	Langelescu et al., <u>2002.05684</u>]
$b \to c \tau \nu$	$pp \rightarrow \tau \nu$	U [Greljo at al., <u>1811.07920]</u>
$b \rightarrow s \tau \tau$	$pp \rightarrow \tau \tau$	[Faroughy et al., <u>1609.07138]</u> [Fuentes-Martin et al., <u>2003.12421]</u>

Conclusions

• $B \rightarrow K \tau \tau$ is cool.

- Nice interplay between experiments:
 - direct @ Belle II
 - vs. indirect @ LHCb via $B \rightarrow K \mu \mu$,
 - vs. bounds from high p_T .
- Discussion point: could LHCb do $B \rightarrow K^{(*)} \tau \tau$ directly?
- Do you prefer the K^{*0} for the $K\pi$ vertex? Should be equally interesting.
- $B_s \rightarrow \tau^+ \tau^-$ is also cool. Will there be an update?
- If we allow [min. broken] $U(2)^5$ symmetry, then we also expect corroboration from $B \to \pi \tau \nu$ and $B \to \pi \ell \ell$.

- Maybe some fun competition Belle II vs. LHCb regarding R_{π} .

- LFU ratios and $b \rightarrow c \tau \nu$ measurements are also corroborating!
 - Didn't focus on them because of previous talk, and the session tomorrow.
 - To be discussed then?

	th.	LHCb	B2		th.	LHCb	B2		th.	LHCb	B2
b → sµµ only				Combined				b \rightarrow стv only			
R _K , R _{K*}	**	√ **	**	$B \rightarrow K \tau \tau$	**	?	**	R _D , R _{D*}	**	√ *	**
Rφ	**	*	X	$B_{s} \to \tau\tau$	**	?		R∧c	**		X
R _{pK}	*	*	X	$B \to K \tau \mu$	**	√ *	*	R _{J/ψ}	**	\checkmark	
$B\toK\mu\mu$	*	√ **	**	$B_s \to \tau \mu$	**	U *		$B_c \to \tau v$	**	?	X
$B_s \to \mu \mu$	**	√ **		$B \rightarrow Kvv$	**	X	**	$B \rightarrow DTV$	**		**
				$\tau \to \mu \gamma$	**		**	(angular)			
$pp \rightarrow \mu\mu$	*	[high	рт]	рр → тµ	*	[high	рт]	рр → т∨	**	[high p	т]
$b \to d \mu \mu \text{ only}$								$b \rightarrow d\tau v \text{ only}$			
								$B [B \rightarrow \pi \tau v]$	*	?	**
Rπ	*	U *	*	$B \rightarrow \pi \tau \tau$	*			$B [B \rightarrow \pi \mu v]$			
$B_d \to \mu \mu$	*	√ **	**	$B \rightarrow \pi v v$	*			$B [\Lambda_b \rightarrow p \tau v]$	*		X
				$B \to \pi \tau \mu$	*			$B [\Lambda_b \rightarrow p \mu v]$			
								$B [B_s \rightarrow K^* \tau v]$ $B [B_s \rightarrow K^* \mu v]$	*		×

- Key:
- paper exists \checkmark
- need upgrade [LHCb-PUB-2018-009] U
- **X** ? cannot be done
- I wasn't sure

Backup

Full event interpretation

- $\Upsilon(4S) \rightarrow BB$ events can be split.
- "Tag" side object reconstructed from generic B decays.
- Train a fast BDT to return a tag *candidate* and probability.
- Trade-off: constraint + purity vs. efficiency.
- Can have a fully constrained hadronic decay, but take a hit in efficiency.
- This isn't new: was done at Belle (BaBar did something similar). Improvements due to speed + adding generic decay modes.

	B± (%)	B ⁰ (%)
Hadronic		
FEI	0.76	0.46
FEI w/ Belle channels	0.53	0.33
Belle	0.28	0.18
BaBar	0.4	0.2
Semileptonic		
FEI	1.08	2.04
Belle	0.31	0.34
BaBar	0.3	0.6

Comput.Softw.Big Sci. 3 (2019)

Belle II status

https://confluence.desy.de/display/BI/Belle+II+Luminosity

More details about the FEI

More details about $B \rightarrow K \nu \bar{\nu}$ and friends

Observables	Belle 0.71 ab^{-1}	Belle II	Belle II
	$(0.12 \mathrm{ab}^{-1})$	5 ab^{-1}	$50 ab^{-1}$
$\overline{\mathrm{Br}(B^+ \to K^+ \nu \bar{\nu})}$	< 450%	30%	11%
$\operatorname{Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_{\rm L}(B^0 \to K^{*0} \nu \bar{\nu})$			0.079
$F_{\rm L}(B^+ \to K^{*+} \nu \bar{\nu})$			0.077
$Br(B^0 \to \nu \bar{\nu}) \times 10^6$	< 14	< 5.0	< 1.5
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	

PTEP(2019)123C01

ATLAS and CMS LQ searches

- Most recent limits are 2016 data $\sim 36 \text{ fb}^{-1}$
- CMS is <u>Eur.Phys.J.C78(2018)707</u> (s), <u>Phys.Rev.D.98.032005</u> (v)
- ATLAS <u>JHEP06(2019)144</u>.
- (*c.f.* 137 fb^{-1} that they have 2016-18).
- Search for, eg. $2\tau + 2b$ jets.
- Excluded up to $\sim 1400 \text{ GeV}/c^2$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ @ NA62

- Buras et al say $(9.11 \pm 0.72) \cdot 10^{-11} \text{ JHEP11(2015)33}$.
- NA62 performed a first search w/ combined 2016 & 17 dataset. Limit is at $18.5 \cdot 10^{-11}$ Phys.Lett.B791(2019)156.
- They talk in terms of a "Single Event Sensitivity", SES := 1 / (N_K, $\epsilon_{\pi\nu\nu}$)

Testing
$$U(2)^5$$

