Anomalies vs Mixing and CPV

Matthew Kirk

La Sapienza, Rome

Beyond the Flavour Anomalies – 2 Apr 2020 (based on 1909.11087 with L. Di Luzio, A. Lenz, T. Rauh)

Flavour anomalies

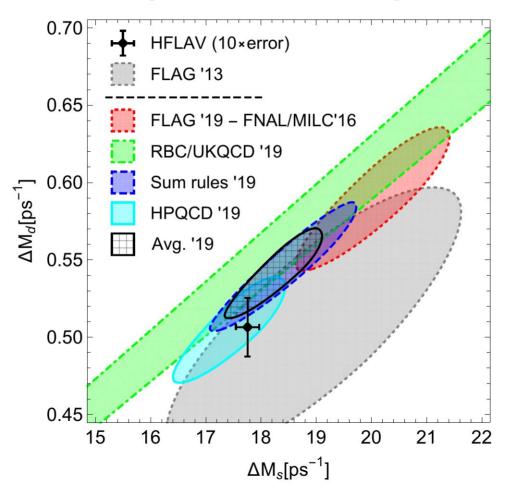
- Lots of signs:
 - R_K, R_{K^*}
 - P'_5

Why talk about mixing?

- Anomalies require coupling to $(\bar{s}b)(\bar{\mu}\mu)$
- Therefore some quark flavour changing coupling
- Meson mixing is a great probe of quark flavour changing effects

Why talk about mixing?

- Why though?
- Several reasons:
- In the SM, B_s mixing is:
 - Loop supressed (No FCNC in the SM at tree level)
 - GIM supressed ($m_u \approx m_c \approx 0$ relative to m_t)

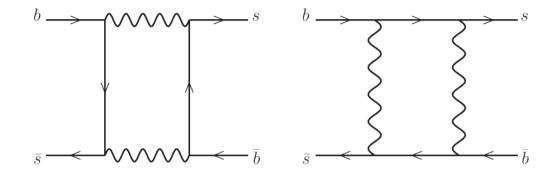

Why talk about mixing?

- In the SM, B_s mixing is:
 - Loop supressed (No FCNC in the SM at tree)
 - GIM supressed ($m_u \approx m_c \approx 0$, relative to m_t)
- So plenty of ways for NP to show up competitively with the SM

- No use looking for NP if you can't say how big the SM background is
- For a long time, mixing plagued by low precision from hadronic matrix elements

- $\Delta M_s^{\rm SM}$:
 - 2006: $(19.3 \pm 6.7) \, \mathrm{ps^{-1}}$ (35% unc)
 - 2011: $(17.3 \pm 2.4) \, \mathrm{ps}^{-1}$ (14% unc)
 - 2015: $(18.3 \pm 2.7) \, \mathrm{ps}^{-1}$ (15% unc) (V_{cb} problems)

- $\Delta M_s^{\rm SM}$:
 - 2006: $(19.3 \pm 6.7) \, \mathrm{ps^{-1}}$ (35% unc)
 - 2011: $(17.3 \pm 2.4) \, \mathrm{ps}^{-1}$ (14% unc)
 - 2015: $(18.3 \pm 2.7) \, \mathrm{ps}^{-1}$ (15% unc) (V_{cb} problems)
 - 2019: $(18.4^{+0.7}_{-1.2})$ ps⁻¹ (4-6% unc) (again, V_{cb})
 - 2025?: $(? \pm 0.5) \, \mathrm{ps}^{-1}$ (<3% unc)



10

What happened?

• Quick introduction to mixing

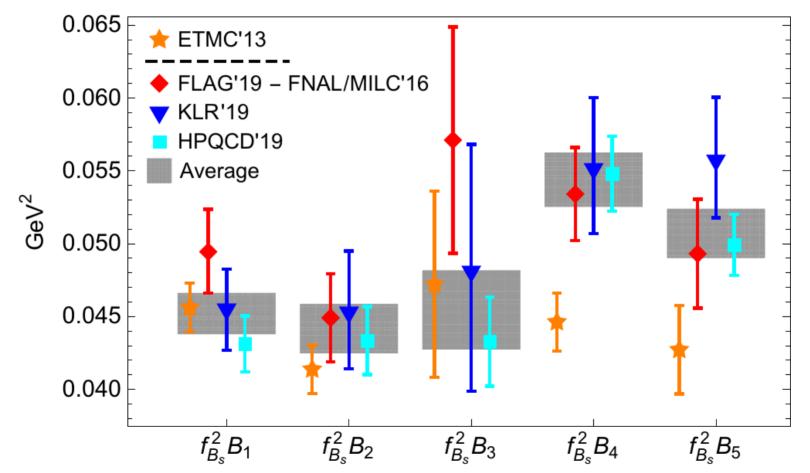
Overview of ΔM_s

 $\frac{\partial}{\partial t} \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix} = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right) \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix}$

Overview of ΔM_s

- $\Delta M_s = M_{B_H} M_{B_L}$
- Calculated as $\Delta M_s = 2|M_{12}|$ • $M_{12} = \frac{G_F^2}{16\pi^2} \lambda_t^2 M_W^2 S_0(x_t) \hat{\eta}_B \frac{\langle \bar{B}_s | Q_1 | B_s \rangle}{2M_{B_s}}$

Overview of ΔM_s


- $\Delta M_s = M_{B_H} M_{B_L}$
- Calculated as $\Delta M_s = 2|M_{12}|$ • $M_{12} = \frac{G_F^2}{16\pi^2} \lambda_t^2 M_W^2 S_0(x_t) \hat{\eta}_B \frac{\langle B_s | Q_1 | B_s \rangle}{2M_B}$
- The matrix element $\langle \bar{B}_s | Q_1 | B_s \rangle$ is generally parameterised as $f_{B_s}^2 B_1$, and this is the largest uncertainty.

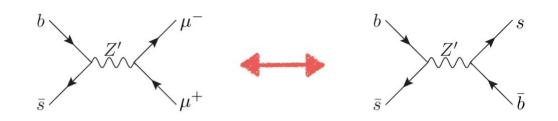
What happened?

- New lattice QCD results 1602.03560, 1907.01025
- New HQET sum rules results

1606.06054, 1711.02100, 1904.00940

What happened?

Relating mixing to the anomalies

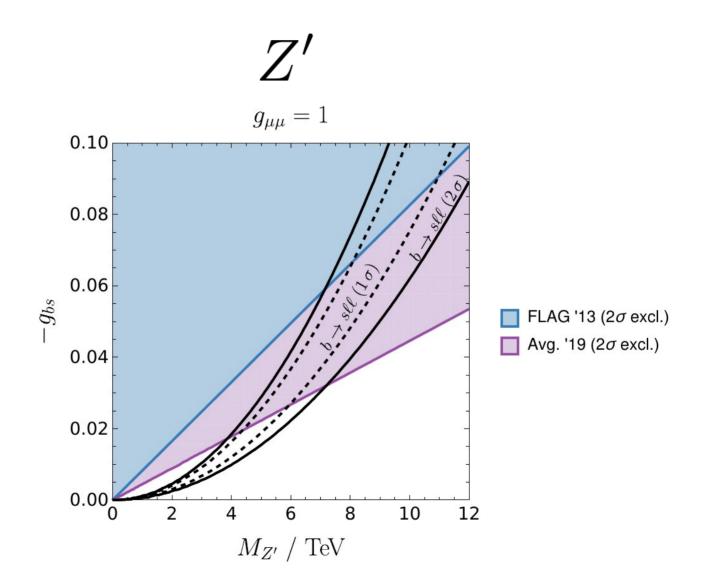

- EFT for mixing:
 - Four quark operators
 - $(\bar{s}\Gamma b)(\bar{s}\Gamma' b)$
- EFT for anomalies:
 - Two quark two lepton operators
 - $(\bar{s}\Gamma b)(\bar{\ell}\Gamma'\ell)$

Relating mixing to the anomalies

- In general, these are unrelated
- So we have to look at more specific models

Relating mixing to the anomalies

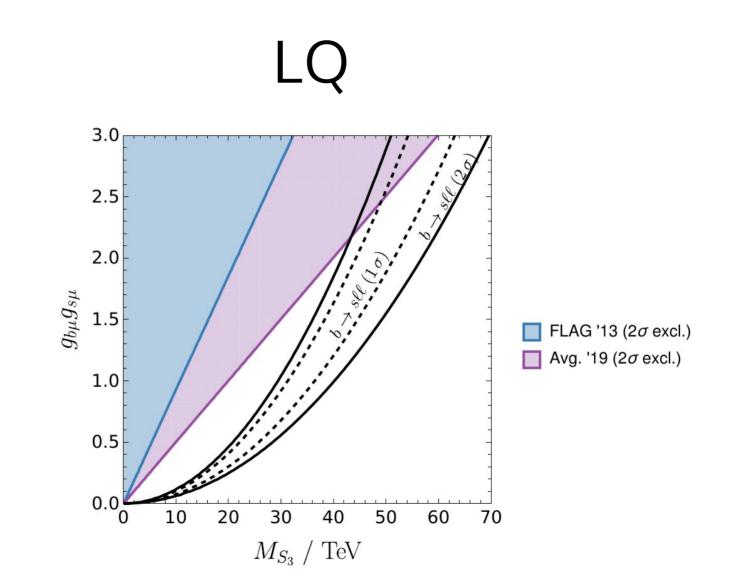
• Z' gives tree contribution to both



 LQs give tree for anomalies, loop for mixing

Image: Luca Di Luzio, CKM 2018

- With a Z':
 - $C_9 \sim g_{bs} g_{\mu\mu} / M_{Z'}^2$
 - $\Delta M_s \sim g_{bs}^2/M_{Z'}^2$
- Different dependence on the $\bar{s}b$ coupling gives nice interplay
- Means mixing imposes an upper bound



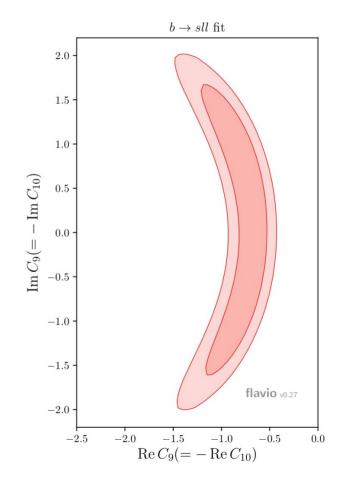
LQ

- With a LQ:
 - $C_9 \sim g_{b\mu}g_{s\mu}/M_{LQ}^2$

$$-\Delta M_s \sim (\Sigma g_{b\ell} g_{s\ell})^2 / M_{LQ}^2$$

- Different dependence on the coupling gives nice interplay (subject to assumptions on $g_{b\ell}$)
- Means mixing imposes an upper bound

What about CPV BSM?


- So far have assumed real BSM giving the anomalies
- Do the anomalies allow new phases to contribute?

What about CPV BSM?

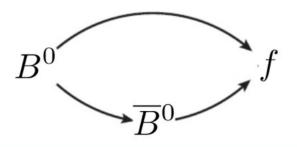
- Leading contribution to anomalies involves interference with SM
- So real BSM
- Imaginary BSM doesn't contribute until next order => poorly constrained

What about CPV BSM?

 (Note – old fit from ~ summer 2018 but conclusion stands)

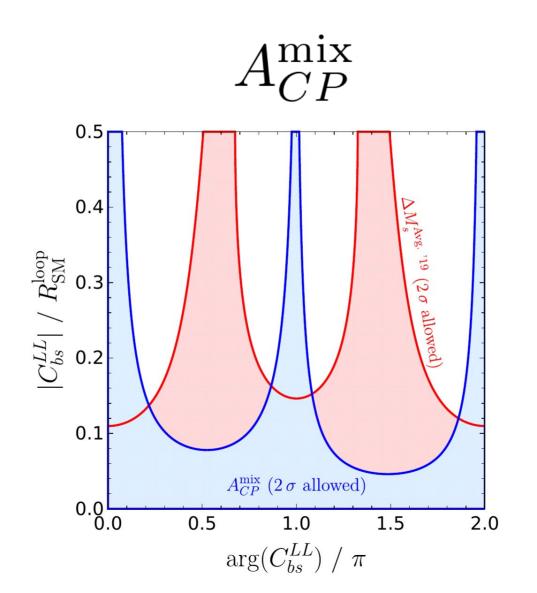
26

Mixing constraints


- Mixing can constrain the new phases
- Many CPV observables from mixing
- CPV in mixing weak phase $\phi_{12} = \arg(-M_{12}/\Gamma_{12})$
- CPV in interference $B_s \to f$ vs $B_s \to \bar{B}_s \to f$

$$a_{\rm sl}^s$$

- Weak phase ϕ_{12} observable directly in a_{sl}^s
- $a_{sl}^s = |\Gamma_{12}/M_{12}| \sin \phi_{12} = (\Delta \Gamma_s / \Delta M_s) \tan \phi_{12}$
- But hard to measure
- $Exp = (-60 \pm 280) \times 10^{-5}$ HFLAV 2018
- While SM = $(2.06 \pm 0.18) \times 10^{-5}$ 1912.07621



- Interference in decay where both B_s and \bar{B}_s can contribute
- In SM, $B_s \rightarrow J/\psi\phi$ gives $\sin 2\beta_s$

 A_{CP}^{mix}

- Better than a_{sl}^s as is more well measured
 - $Exp = 0.021 \pm 0.031$ HFLAV 2018
- And from theory, known by fitting β_s from other CKM inputs
- Despite large exp error, still pretty constraining

Opening the Z' parameter space

- Does adding a new CPV phase weaken the upper bound from mixing?
- Look at more specific point

$$-M_{Z'} = 5 \text{ TeV}, \lambda_{\mu\mu} = 1$$

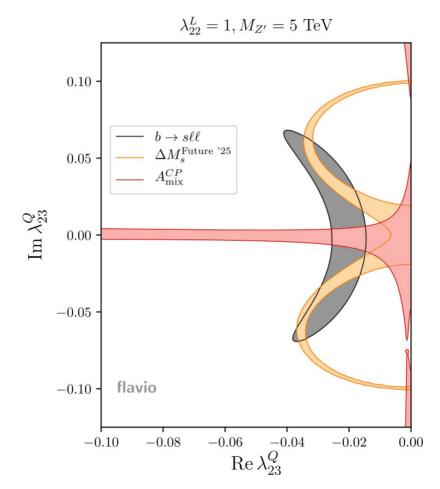
– Central value of $R_{K^{(*)}} \operatorname{gives} \approx 1.5\,\sigma\,\mathrm{tension}$ with ΔM_s

Opening the Z' parameter space

 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$ 0.10 $b \rightarrow s\ell\ell$ $\Delta M_s^{\rm Avg.~'19}$ 0.05 $A_{
m mix}^{CP}$ $\operatorname{Im}\lambda^Q_{23}$ 0.00-0.05flavio -0.10-0.06-0.02-0.08-0.04-0.100.00 $\operatorname{Re} \lambda_{23}^Q$

Future precision

- Assuming future increased precision on V_{cb} and $f_B^2 B$
- 1% on V_{cb} from Belle II and LHCb
- 2% on $f_B^2 B$ from lattice and sum rules results
- Get ΔM_s error of $\pm 0.5 \mathrm{ps}^{-1}$


Opening the Z' parameter space

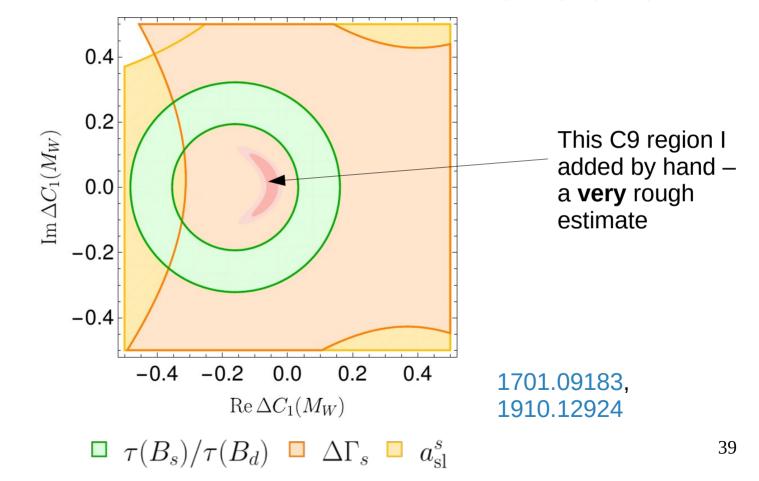
• Look at more specific point

$$-M_{Z'} = 5 \text{ TeV}, \lambda_{\mu\mu} = 1$$

– Central value of $R_{K^{(*)}}$ gives $\approx 4 \sigma$ tension with ΔM_s

Opening the Z' parameter space

36


LFU contribution

- Can fit the data with a mix of LFUV and LFU_{1704.05446}.
- $C_L^{\mu} \approx C_9^{\text{univ}} \approx -0.5$ 1809.08447, 1903.09578
- Large LFU easy to generate through charm loops – exactly as in the SM
 1701.09183, 1910.12924
- $C_9^{\mathrm{SM, \ charm \ loop}} \approx 0.5 C_9^{\mathrm{SM}}$

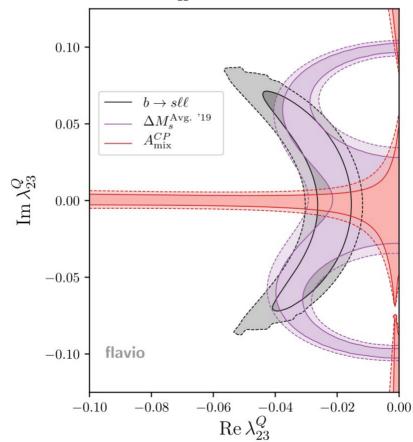
LFU contribution from $(\bar{s}b)(\bar{c}c)$

- With a $(\bar{s}b)(\bar{c}c)$ BSM operator, also get large contribution to $\Delta\Gamma_s$
- Quick idea: Z' with $(\bar{s}b)$ and $(\bar{c}c)$
- Possible complex phases

LFU contribution from $(\bar{s}b)(\bar{c}c)$

Summary

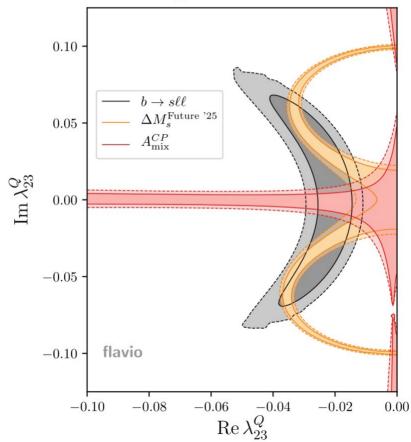
- New determinations of B_s mixing matrix elements bring us towards precision era of mixing
- CP violating couplings don't loosen the bounds
- By 2025 precision will be even better


Discussion points

- What are the current/future values/uncertainties of B mixing matrix elements?
- Are there hidden assumptions in the determination of β_s ?
- Is there a LFU effect in C9 which could be generated by 4 quark operators?

Backup slides

Opening the Z' parameter space


 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$

43

Opening the Z' parameter space

 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$

