LFU measurements at high q²

Beyond the flavour anomalies workshop, 4th April 2020

T. Blake

$b \rightarrow s\ell + \ell - at high q^2$

- Large number of measurements at high q² in different b→sµ+µdecay modes:
 - Branching fractions, angular observables, CP- and isospinasymmetries.
- See contributions from broad resonances above the open charm threshold in our data.

Background subtracted and efficiency corrected dimuon mass distribution of $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays.

Data/theory comparison at high q^2

Experiment

- Several broad charmonium resonances contribute (above the open charm threshold).
- Interference effects are important.
- Pattern is not the same as seen in e+e→ hadrons.

Theory

- Calculations typically use a local OPE.
 B. Grinstein and D. Pirjol, [PRD 70 (2004) 114005]
 M. Beylich, G. Buchalla and T. Feldmann, [Eur. Phys. J. C 71,(2011) 1635]
- Expect agreement between data and prediction only in integrated observables (up-to quark-hadron duality violating effects).

Irrelevant for LFU tests? Two exceptions: we need accurate predictions to interpret results in terms of C_9 and C_{10} ; and we rely on the distribution to correct experimental results for the migration of events in q^2 .

R_K and R_{K*}

• What LFU measurements do we have so far?

• Only have measurements from the *B*-factory experiments at large q^2 .

R_K and R_{K^*} at Belle II

• Extrapolating current performance to Upgrade II:

Observable	Belle $[0.7ab^{-1}]$	Belle II $[5ab^{-1}]$	Belle II $[50ab^{-1}]$
$R_K \ [1.0, 6.0] \ { m GeV^2/c^4}$	28%	11%	3.6%
$R_K > 14 \mathrm{GeV^2/c^4}$	30%	12%	3.6%
R_{K^*} [1.0,6.0] GeV ² /c ⁴	26%	10%	3.2%
$R_{K^*} > 14 \mathrm{GeV^2/c^4}$	24%	9%	2.8%
R_{X_s} [1.0,6.0] GeV ² /c ⁴	32%	12%	4.0%
$R_{X_s} > 14 {\rm GeV^2/c^4}$	28%	11%	3.4%

From Belle II physics book [arXiv:1808.10567]

Angular observables

- Belle has also made measurements of the optimised angular observables at low- and high-q².
 - Measurements with dielectron and dimuon final-states are compatible.
 - 2.6 σ tension between P_5 and SM predictions at low- q^2 .

Belle [PRL 118 (2017) 111801]

- Q Why hasn't LHCb made measurements of R_{K} , R_{K^*} or R_{pK} at high q2?
- A Bremsstrahlung effects are large and this makes the analysis more difficult.

Energy loss in LHCb

- Dielectron and dimuon final-states look very different in our analyses due to the energy lost by electrons in the detector.
- Bremsstrahlung emission is much more significant than the QED emission considered in the SM calculations. Experimentally we cannot separate the two effects.
- Impact of the energy loss depends on q^2 , with a larger migration at high q^2 .
- The signal line shape, and the migration of candidates in q², depends on the underlying q² distribution of events within a q² bin.

Bremsstrahlung

• Depends on material in detector and energy of electrons:

 Unfortunately LHCb is not that lightweight (*e*[±] see >70% X₀ before ECAL) and the electrons are high energy.

Bremsstrahlung recovery

- Large energy loss through Bremsstrahlung in the detector (significant fraction of the e[±] energy).
- Add clusters with $E_T > 75 \text{ MeV}/c^2$ in the ECAL, within a search window about the track direction, to correct for Bremsstrahlung emission.
- Mass resolution depends on the energy resolution of the calorimeter.

 Even after Bremsstrahlung recovery, we see large differences between dielectron and dimuon final-states.

• Signal is washed out for dielectron final-states due to imperfect Bremsstrahlung recovery.

 Narrow charmonium resonances have larger tails for dielectron finalstates (due to imperfect Bremsstrahlung correction and the energy resolution of the ECAL).

• Partially reconstructed backgrounds with missing pions are not well separated from the signal for dielectron final-states.

R_K at low q^2

- Similar contributions are seen in selected
 B+→K+ℓ+ℓ- candidates.
- Projecting onto the reconstructed B⁺ mass for 1.1<q²<6.0 GeV²/c⁴:

R_K and R_{K^*} at high q^2 ?

R_K and R_{K^*} at high q^2

- Can we fit in 2D?
 - Features are easy to distinguish by eye in 2D but we don't know the underlying q² distribution of the signal or partially reconstructed backgrounds.
- Can we constrain partially reconstructed backgrounds, e.g. using the K*0e+e- signal to constrain the background to K+e+e-?
 - Would require some assumptions, e.g. can we assume isospin symmetry?
- Can we constrain the combinatorial background shape?
 - It's Unfeasible to generate enough MC to build a template. We could assume the behaviour is same in the dielectron and dimuon final-states or use samesign combinations. Unclear how safe these assumptions would be since it depends on the origin of the leptons.

Other processes?

- $B_s \rightarrow \phi \ \ell + \ell \bullet \bullet$ $\Lambda_b \rightarrow p K^- \ell^+ \ell^ \Lambda_b \rightarrow \Lambda \ell \ell^-$

 \times suppressed by smaller B_s production fraction $(f_s/f_d \sim 0.26).$

✓ reduced partially reconstructed background (largest source involves a missing kaon and is better separated from the signal).

Other processes?

- $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$ $\Lambda_{b} \rightarrow \rho K^{-} \ell^{+} \ell$ $\Lambda_{b} \rightarrow \Lambda \ell^{-} \ell^{-}$

 \times very little phase space at high q^2 .

Background subtracted *pK* mass distribution of $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ decays in $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$:

See contributions from a large number of Λ^* resonances at large masses.

Other processes?

- $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$ $\Lambda_{b} \rightarrow p K^{-} \ell^{+} \ell^{-}$
- $\Lambda_b \rightarrow \Lambda \ell^- \ell^-$

- X suppressed due to need to reconstruct long-lived Λ baryons.
- partially reconstructed backgrounds are suppressed.
- signal predominantly expected at large q^2 .

(2016) 074501] 115] **93** 06 (2015) [PRD Ø -HCb [JHEP **Detmold et**