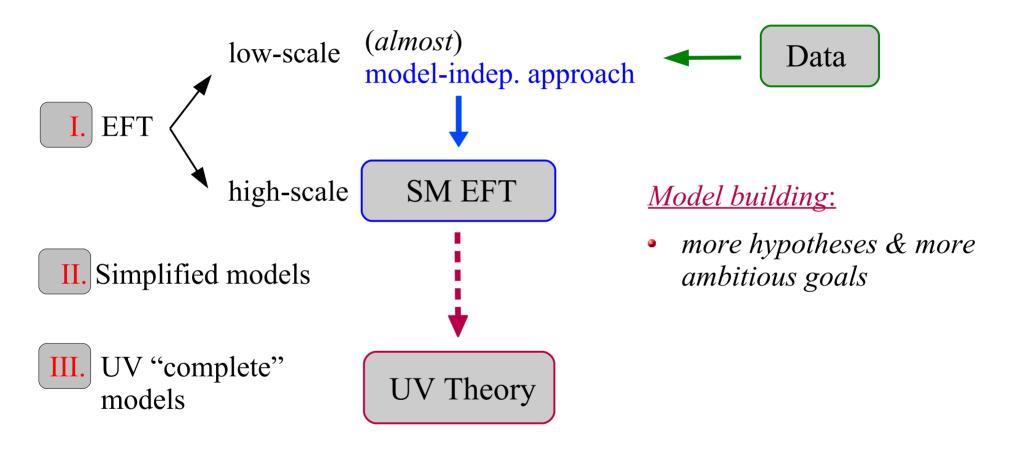
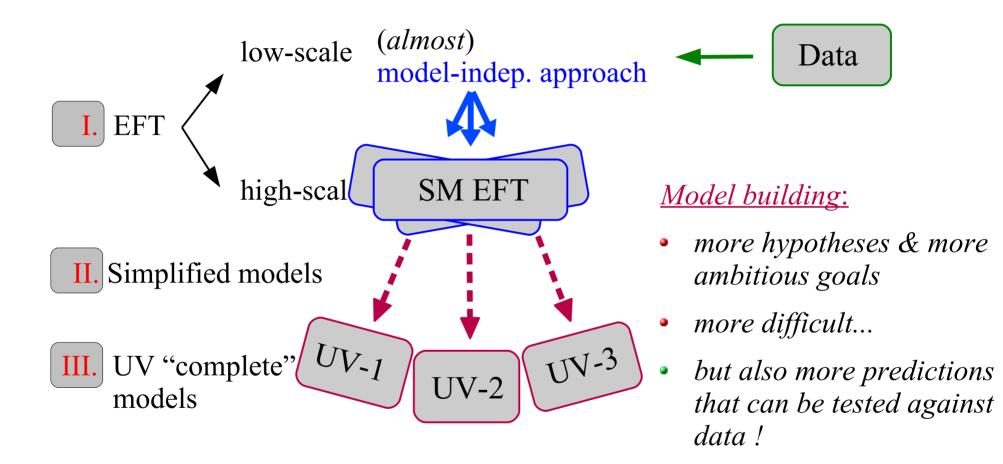
<u>Theoretical Models for combined explanations</u> of the B-physics anomalies

> Gino Isidori [University of Zürich]

- ► Introduction [*From the SMEFT to UV models*]
- ►LFU anomalies & Flavor symmetries [*The* U(2)ⁿ *case*]
- Simplified models: The Return of the Leptoquark
- ► Non-universal gauge interactions [*The* PS³ *hypothesis*]
- Conclusions

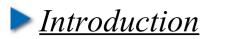


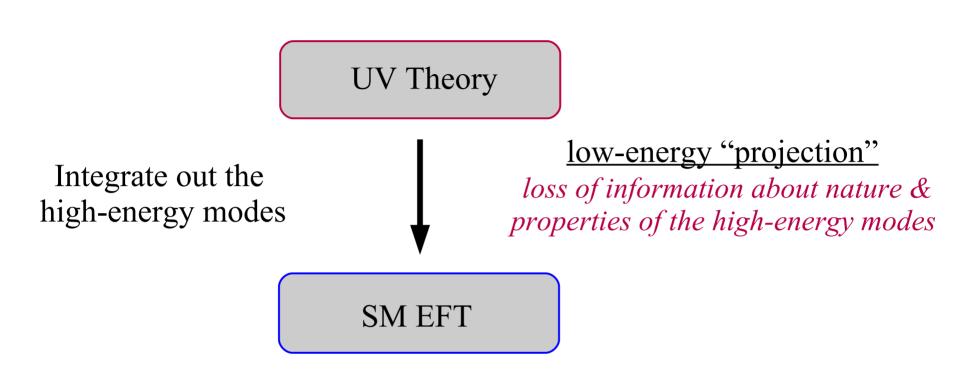
European Research Council Established by the European Commission


Introduction

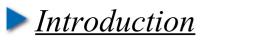
We can adopt different theoretical approaches to describe the anomalies:

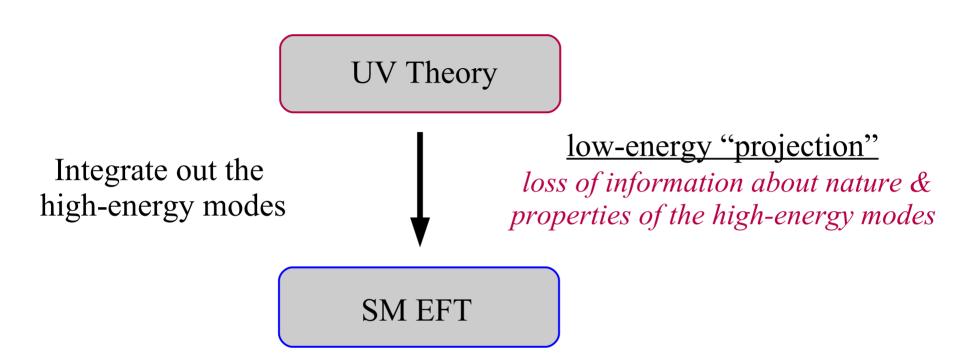
<u>Introduction</u>

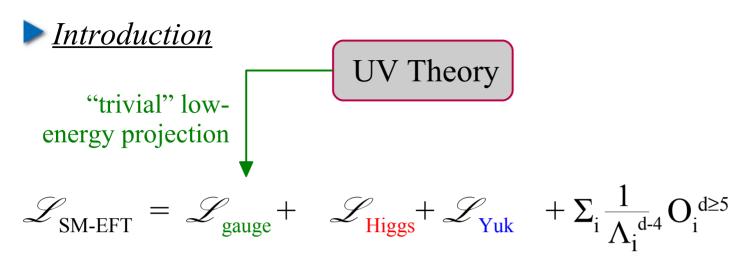

We can adopt different theoretical approaches to describe the anomalies:



Goals (↔ "*quality measure*") of the model-building attempts (*while waiting more data...*): • Solve the anomalies with no/small fine tuning with other data

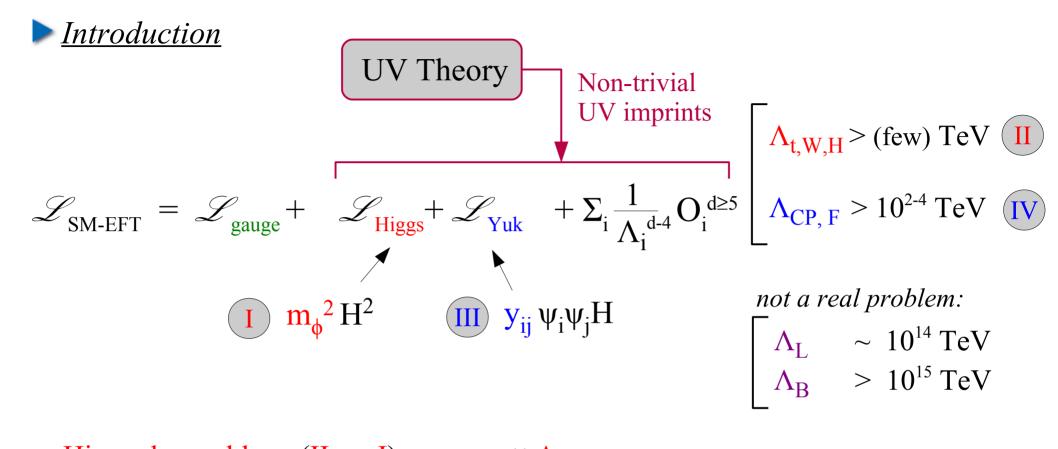

• Link the solutions of the anomalies to solutions of <u>existing SM problems</u>


G. Isidori – *Theoretical Models for combined explanations*


Reconstructing the UV theory from its low-energy limit is a very difficult problem with no unique solution [\sim 35 years from the Fermi Theory to the GSW model...]

Reconstructing the UV theory from its low-energy limit is a very difficult problem with no unique solution [~ 35 years from the Fermi Theory to the GSW model...]

- The light fields appearing in the EFT are often superposition of the fundamental fields [*N.B.: true also for weak theories & gauge fields:* $A_{\mu} = c_{\theta} B_{\mu} + s_{\theta} W_{\mu}$]
- Many global symmetries of the EFT could by accidental low-energy properties
- The most interesting hints on UV dynamics comes from *un-natural features* of the EFT... [→ that's why we would like to link the anomalies to existing SM probl.]

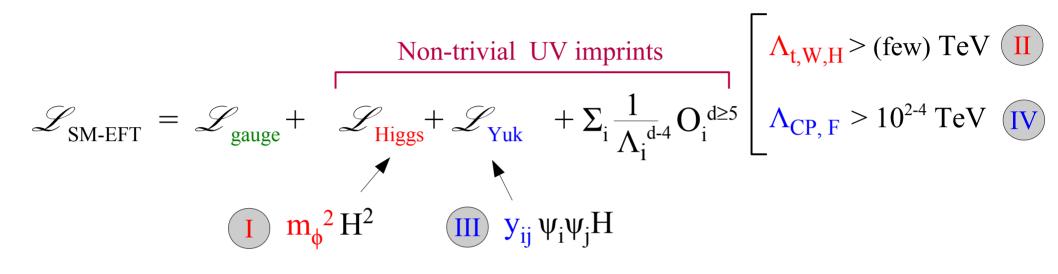


Structure fully dictated by

- Number of light fields
- Their charges under longrange interactions

Contains only "natural" O(1) couplings

G. Isidori – *Theoretical Models for combined explanations*



- Hierarchy problem (II vs. I): $m_{\phi} \ll \Lambda_{t,W,H}$
- SM Flavor problem (III): $y_e \ll y_t$ [N.B.: 5 orders of magnitude !]
- NP Flavor problem (IV vs. I): $m_{\phi} \ll \Lambda_{CP, F}$

G. Isidori – *Theoretical Models for combined explanations*

Beyond the Flavour Anomalies – Durham, Apr. 2020

Introduction

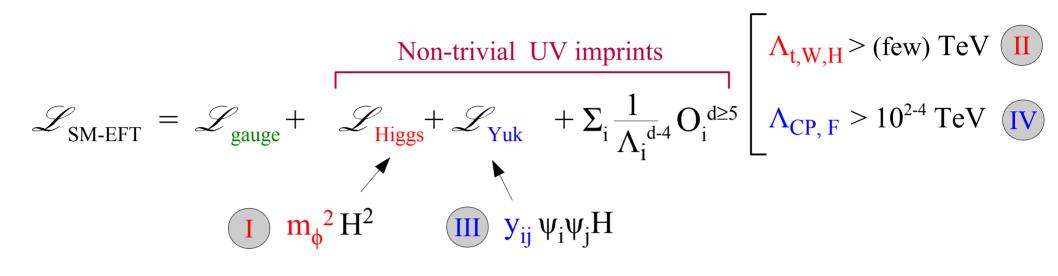
The MFV "solution" (popular in the *pre-LHC era*):

- The genuine hierarchy problem is not too severe \rightarrow expect NP at TeV scale
- Postpone the solution of III to very high scale, and assume no other sources of flavor-breaking at low-energies → TeV scale NP is flavor-blind

Try to separate the two problems & postpone the Flavor one

G. Isidori – *Theoretical Models for combined explanations*

Introduction


The MFV "solution" V popular in the *post run-I post run-I post run-I post run-I pre LHC era*):

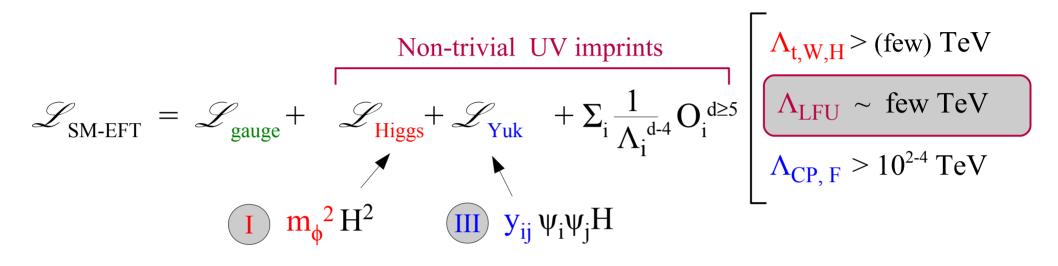
- The genuine hierarchy problem is not too severe \rightarrow expect NP at TeV scale
- Postpone the solution of III to very high scale, and assume no other sources of flavor-breaking at low-energies → TeV scale NP is flavor-blind

From high-pT searches we now know that if there is any NP at the TeV scale, then for sure it is not flavor universal...

G. Isidori – *Theoretical Models for combined explanations*

Introduction

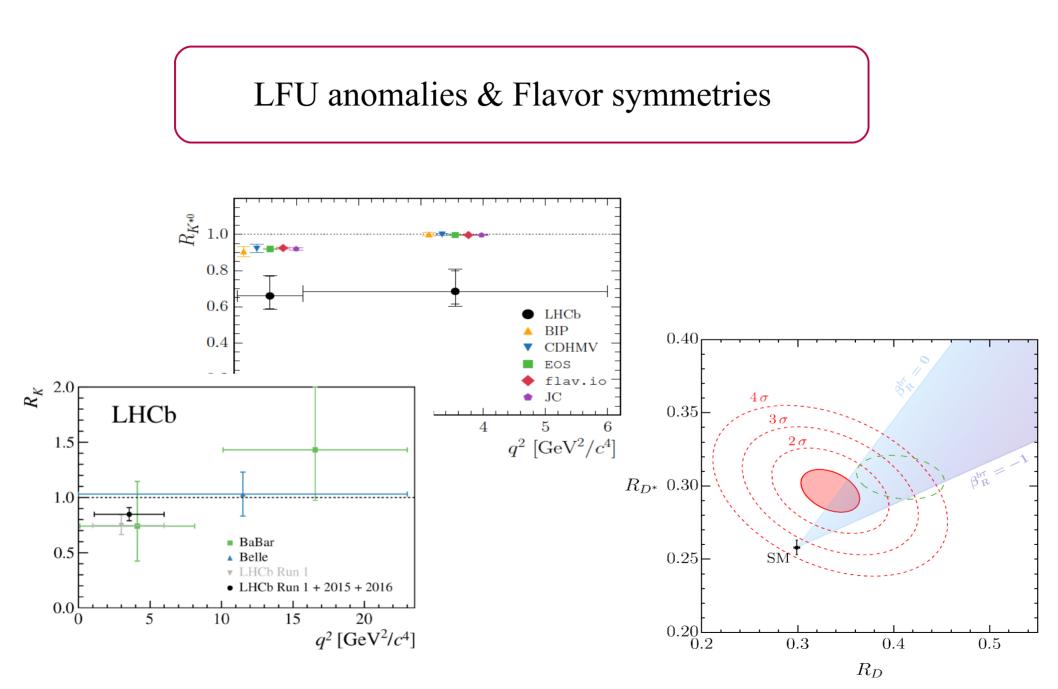
The path of <u>flavor non-universal interactions</u> (not so popular *yet*...):


- The hierarchical structure of the SM Yukawa couplings is a clear indication that <u>all the new degrees of freedom</u> are coupled in a <u>non-universal way</u> to SM fermion families → expect TeV scale NP coupled mainly to 3rd gen.
- Genuine hierarchy problem less severe for NP coupled mainly to 3rd gen.

We should not give up & should not try to separate the two problems

G. Isidori – *Theoretical Models for combined explanations*

Beyond the Flavour Anomalies – Durham, Apr. 2020


Introduction

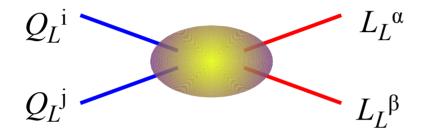
The path of <u>flavor non-universal interactions</u> (not so popular *yet*...):

 The hierarchical structure of the SM Yukawa couplings is a clear indication that <u>all the new degrees of freedom</u> are coupled in a <u>non-universal way</u> to SM fermion families → expect TeV scale NP coupled mainly to 3rd gen.

This is the path that seems to be indicated by the recent hints of Lepton Flavor <u>non</u> Universality in semi-leptonic B decays

On the LFU anomalies

Recent data show some <u>convincing</u> evidences of Lepton Flavor Universality violations


- → b → c charged currents: τ vs. light leptons (μ , e) [R_D, R_{D*}]
- → b → s neutral currents: μ vs. e [R_K, R_{K*} (+ P₅ *et al.*)]

IF taken <u>together</u>... this is probably the largest "coherent" set of deviations from the SM we have ever seen...

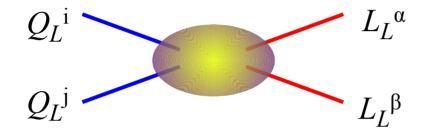
As we shall see, putting them together in a consistent way is quite non-trivial, but is "re-warding" from the model-building point of view

On the LFU anomalies

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling [*competing with SM tree-level*] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [*competing with SM loop-level*] in bs $\rightarrow l_2 \ l_2 \ [R_K, R_{K^*}, ...]$


$$T_{ij\alpha\beta} = (\delta_{i3} \times \delta_{3j}) \times (\delta_{\alpha3} \times \delta_{3\beta}) +$$

small terms for 2nd (& 1st) generations

On the LFU anomalies

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

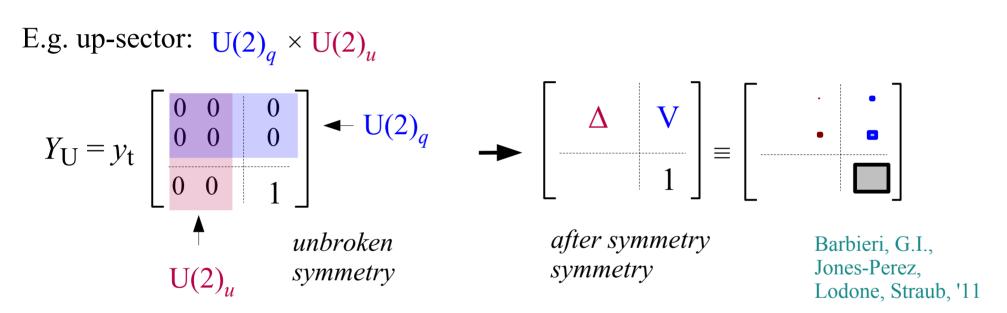
Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

<u>Long list of constraints [FCNCs + semi-leptonic b decays + π , K, τ decays + EWPO]</u>

Essential role of *flavor symmetries*, not only to explain the pattern of the anomalies, but also to "protect" against too large effects in other low-energy observables

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

$$\Psi = \begin{bmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \\ \hline \Psi_3 \end{bmatrix} \longleftarrow \text{ light generations (flavor doublet)}$$
$$\bullet \quad 3^{\text{rd}} \text{ generation (flavor singlet)}$$


SM fermion (e.g. q_L)

....with suitable (<u>small</u>) symmetry-breaking terms, related to the structures observed in the SM Yukawa couplings

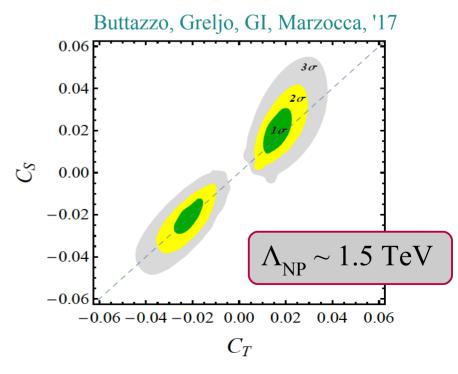
Barbieri, G.I., Jones-Perez, Lodone, Straub, '11

NB: This flavor symmetry does not need to be a "fundamental" symmetry, it could well be an "accidental" symmetry, resulting from non-universal interactions that distinguish the 3rd family

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

Main idea: the same symmetry-breaking pattern control the mixing $3^{rd} \rightarrow 1^{st}$, 2^{nd} gen. for the NP responsible for the anomalies

 $|\mathbf{V}| \approx |\mathbf{V}_{\rm ts}| = 0.04$ $|\Delta| \approx y_{\rm c} = 0.006$


N.B.: this symmetry & symmetry-breaking pattern was proposed <u>well-before</u> the anomalies appeared [*it is not ambulance chasing*...!]

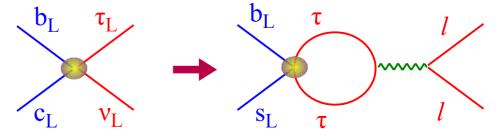
A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

An EFT based on the following two hypothesis:

- $U(2)_q \times U(2)_l$ chiral flavor symmetry
- NP in left-handed semi-leptonic operators only [at the high-scale]

provides an excellent fit to the data

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$


An EFT based on the following two hypothesis:

- $U(2)_q \times U(2)_l$ chiral flavor symmetry
- NP in left-handed semi-leptonic operators only [*at the high-scale*] provides an excellent fit to the data

The latest data have made this picture even <u>more consistent</u>:

- I. Higher NP scale given smaller central value of $b \rightarrow c$ anomaly
- II. Rising "evidence" of LFU contribution to C_9 , naturally expected in this framework:

Alguero *et al.* '19 Aebischer *et al.* '19

Crivellin, Greub, Muller, Saturnino '19

Greljo, GI, Marzocca, '15

\blacktriangleright *LFU anomalies & the* U(2)ⁿ *flavor symmetry*

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

An EFT based on the following two hypothesis:

- $U(2)_q \times U(2)_l$ chiral flavor symmetry
- NP in left-handed semi-leptonic operators only [*at the high-scale*] provides an excellent fit to the data

The latest data have made this picture even more consistent:

- I. Higher NP scale given smaller central value of $b \rightarrow c$ anomaly
- II. Rising "evidence" of LFU contribution to C_9 .
- III. Rising "evidence" of a suppression of $BR(B_s \rightarrow \mu\mu)$, naturally expected by $\Delta C_9 = -\Delta C_{10}$ $BR(B_s \rightarrow \mu\mu)_{SM} = (3.66 \pm 0.14) \times 10^{-9}$ Beneke et al. '19

 $BR(B_s \to \mu\mu)_{exp} = (2.72 \pm 0.34) \times 10^{-9}$

G. Isidori – Theoretical Models for combined explanations

Beyond the Flavour Anomalies – Durham, Apr. 2020

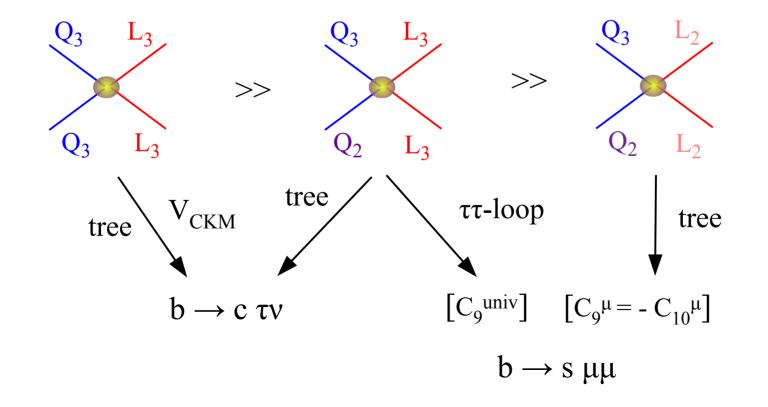
LFU anomalies & the U(2)ⁿ *flavor symmetry*

N.B.: The flavor symmetry hypothesis alone + chiral structure allow us to make very interesting predictions for low-energy observables

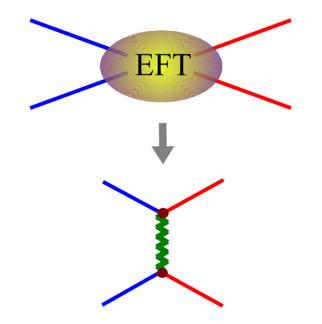
 \rightarrow talk by C. Cornella

- E.g.:
 - I. [<u>flavor</u>]:

$$\frac{A(b \rightarrow d \ ll)_{SM+NP}}{A(b \rightarrow s \ ll)_{SM+NP}} = \frac{A(b \rightarrow d \ ll)_{SM}}{A(b \rightarrow s \ ll)_{SM}} \qquad \frac{A(b \rightarrow u \ lv)_{SM+NP}}{A(b \rightarrow c \ lv)_{SM+NP}} = \frac{A(b \rightarrow u \ lv)_{SM}}{A(b \rightarrow c \ lv)_{SM}}$$

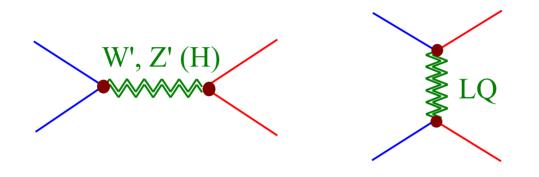

II. [*chiral structure*]:

 $R_{\phi}(B_s) \approx R_{\pi K}(B) \approx R(\Lambda_b)_{\Lambda} \approx R(\Lambda_b)_{pK} \approx \ldots \approx R_K$ exact in the limit where $(C_{10} + C_9)_{SM} / (C_{10} - C_9)_{SM} \rightarrow 0$


$$A_{SM} = (C_{10} + C_9)_{SM} \langle Q_9 + Q_{10} \rangle \begin{bmatrix} 1 + \frac{(C_{10} - C_9)_{SM}}{(C_{10} + C_9)_{SM}} - \frac{\langle Q_9 - Q_{10} \rangle}{\langle Q_9 + Q_{10} \rangle} + \text{other ops...} \end{bmatrix}$$

N.B.: The flavor symmetry hypothesis alone + chiral structure allow us to make very interesting predictions for low-energy observables

N.B.: This <u>consistent</u> flavor symmetry hypothesis tell us that the connection between charged & neutral-current anomalies is not trivial:



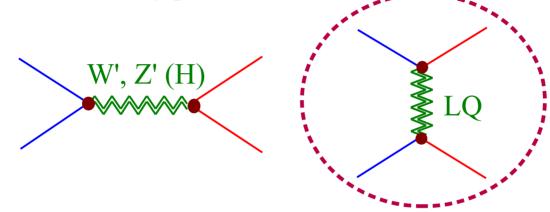
Simplified models: the return of the Leptoquark

General considerations

Which tree-level mediators can generate the effective operators required for a successful EFT fit? Not many possibilities...

N.B.: Given the effective low-scale of NP, we are naturally lead to simplified models with tree-level leading mediators

These simplified models are not meant to be complete UV models, but rather a "tool" to connect

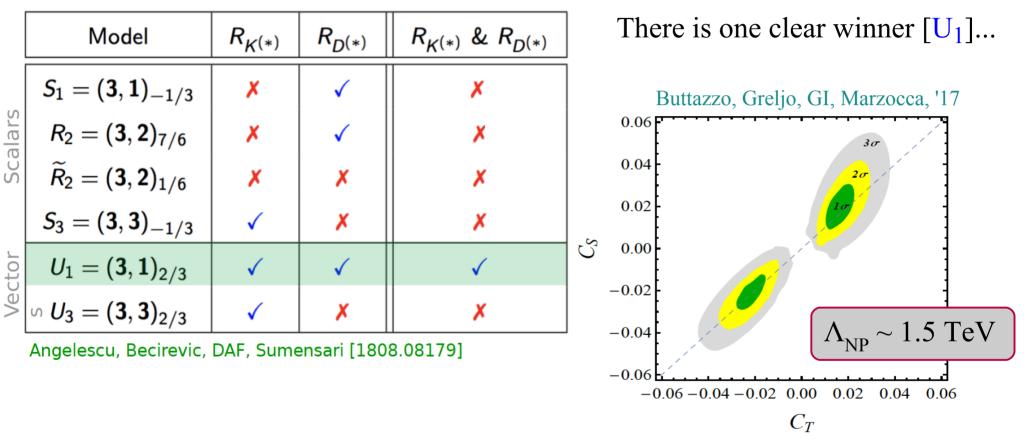

- low- vs. high-energy phenomenology,
- disconnected sectors of the EFT (e.g. semi-leptonic vs. $\Delta F=2$ ops.)

IO

h

General considerations

Which tree-level mediators can generate the effective operators required for a successful EFT fit? Not many possibilities...



LQ (both scalar and vectors) have two general <u>strong advantages</u> with respect to the other mediators:

II. Direct 3^{rd} gen. LQ are also in better shape as far as direct searchessearches:are concerned (*contrary to Z'...*).

General considerations

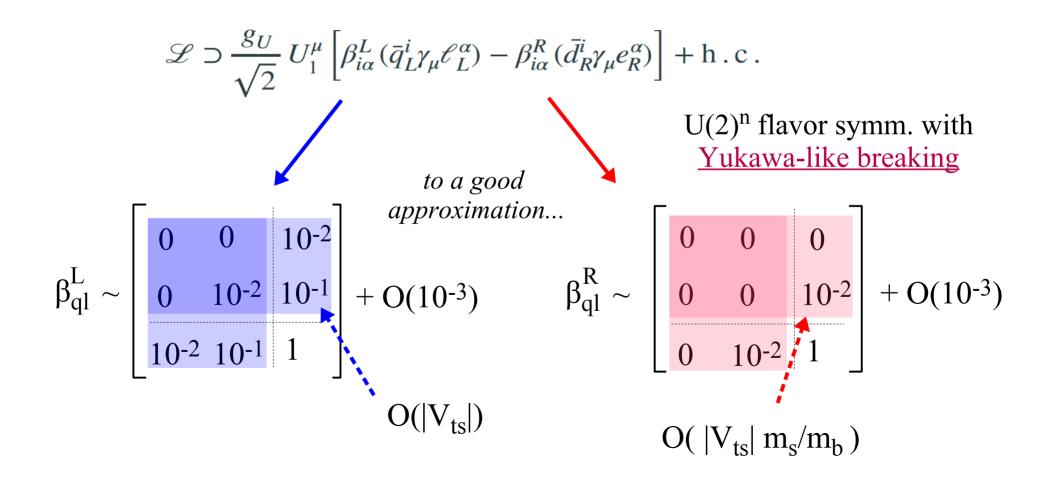
Which LQ explain which anomaly?

General considerations

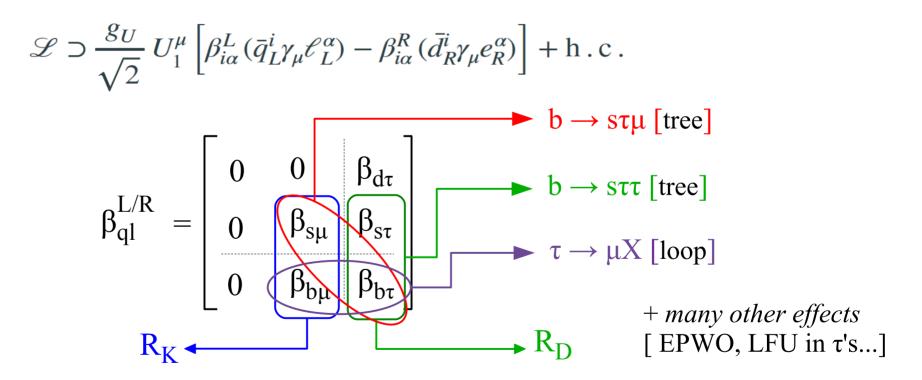
Which LQ explain which anomaly?

	Model	$R_{K^{(*)}}$	<i>R</i> _{<i>D</i>(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$	The			
	$S_1 = (3, 1)_{-1/3}$	×	\checkmark	×	1			
Scalars	$R_2 = (3, 2)_{7/6}$	×	✓	×				
Sco	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×	[<i>as</i> 11			
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×				
Vector	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark	3 ii			
Ve	∽ <i>U</i> ₃ = (3 , 3) _{2/3}	\checkmark	×	×				
					• $S_1 & S_3$ d option for EFT "pure-LH" tion lin, Muller, Ota '17 zzo <i>et al.</i> '17			
					7			
• U_1 + colorless-vectors • $S_1 \& S_3$								
Being a massive vector, U_1 requires Good option for								
an appropriate UV compl. \rightarrow always the EFT "pure-LH"								
accompanied by (at least) a Z' solution								
	Alonso, Grinstein Barbieri, GI , Pat + wide liter		Crivellin, Muller, Ota '17 Buttazzo <i>et al.</i> '17 Marzocca '18					

There is one clear winner $[U_1]$...

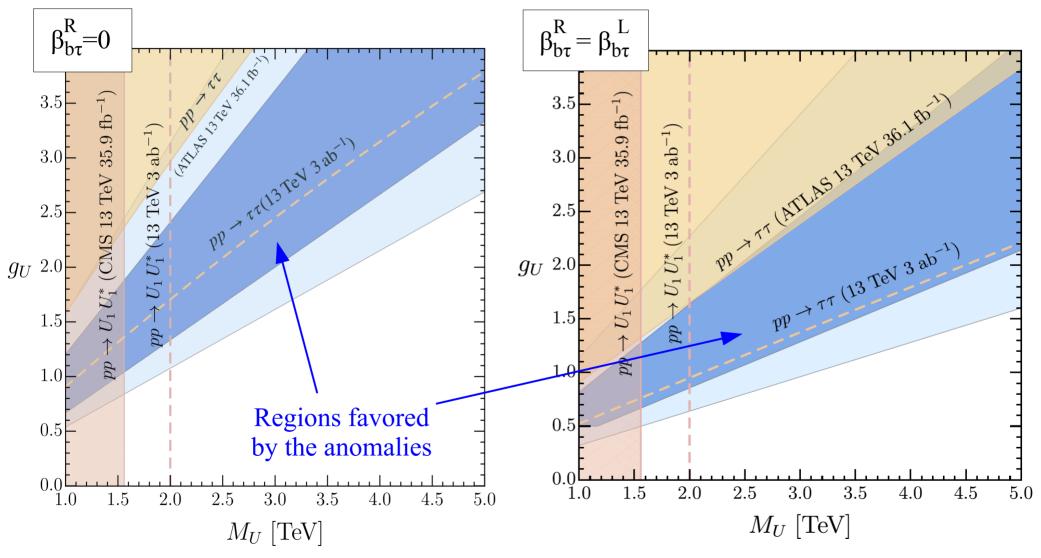

...but the single-mediator case s definitely an over simplification [as we learned in the last ~ 2 years...]

3 interesting options:

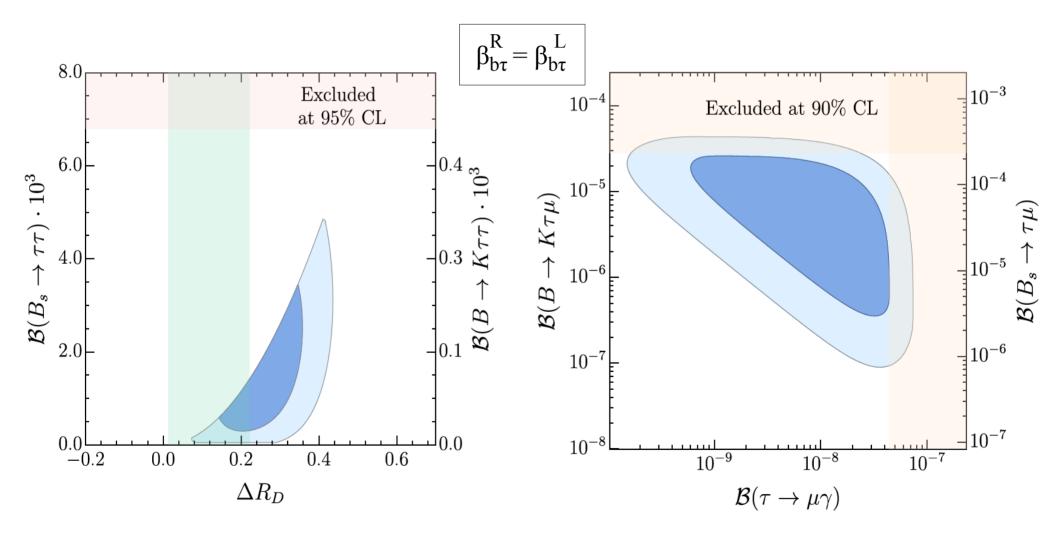

• R₂ & S₃ GUT-inspired option for EFT solution including also RH currents

Becirevic et al. '18

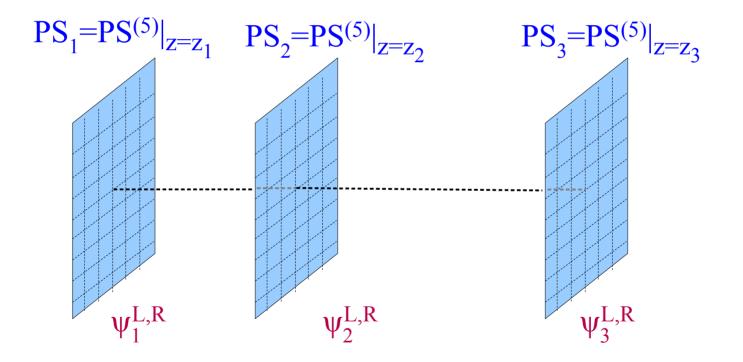
- Initial attempts focused on LQ with few, purely LH couplings. However, the quantum numbers of the U_1 allow both RH and LH currents.
- A consistent reduction in the number if free parameters is achieved with the help of the flavor symmetry:



- Initial attempts focused on LQ with few, purely LH couplings. However, the quantum numbers of the U_1 allow both RH and LH currents.
- A consistent reduction in the number if free parameters is achieved with the help of the flavor symmetry:


The presence of the (motivated) extra coupling leads to a series of interesting effects at both low- and high-energies Bordone, Cornella, Fuentes-Martin, GI, '18 Cornella, Fuentes-Martin, GI, '19

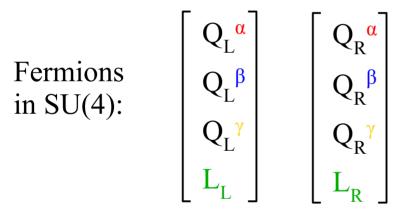
The presence of RH couplings leads to significant differences at high-p_T:


Baker, Fuentes-Martin, GI, König, '19

Probably the most striking signature of large RH couplings is the (unavoidable) large enhancement of the <u>helicity-suppressed</u> $B(B \rightarrow \tau\tau) \& B(B \rightarrow \tau\mu)$:

Cornella, Fuentes-Martin, GI, '19

Non-universal gauge interactions & the PS³ hypothesis

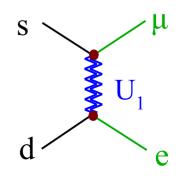

G. Isidori – *Theoretical Models for combined explanations*

Beyond the Flavour Anomalies – Durham, Apr. 2020

Toward a UV completion: the PS³ hypothesis

Starting observation: the gauge theory proposed in the 70's to unify quarks and leptons by <u>Pati & Salam</u> predicts a massive vector LQ with the correct quantum numbers to fit the anomalies:

<u>Pati-Salam</u> group: $SU(4) \times SU(2)_L \times SU(2)_R$

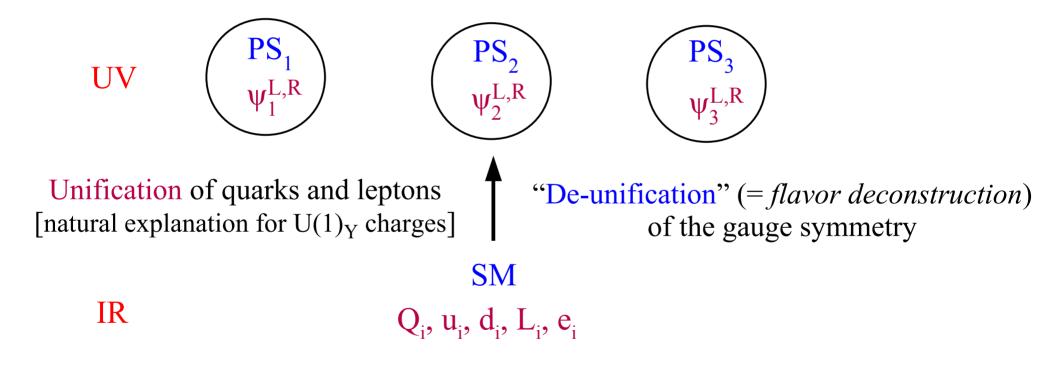


Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

The problem of the "original PS model" are the strong bounds on the LQ couplings to $1^{st} \& 2^{nd}$ generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Interesting recent attempts to solve this problem adding extra fermions and/or modifying the gauge group [Calibbi, Crivellin, Li, '17; Di Luzio, Greljo, Nardecchia, '17]



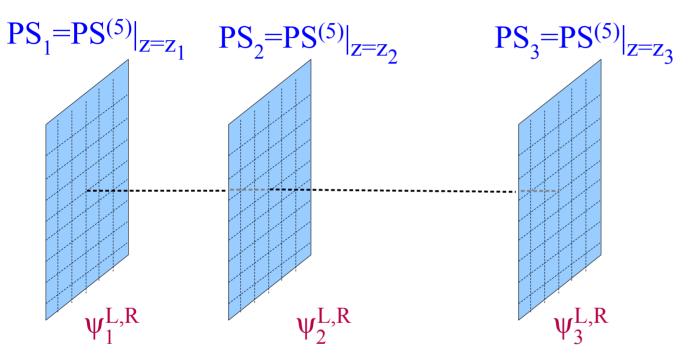
 $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

Bordone, Cornella, Fuentes-Martin, GI, '17

Main idea: at high energies the 3 families are charged under 3 independent gauge groups (gauge bosons carry a flavor index !)

≁ Light LQ coupled mainly to 3rd gen.

Key advantages:

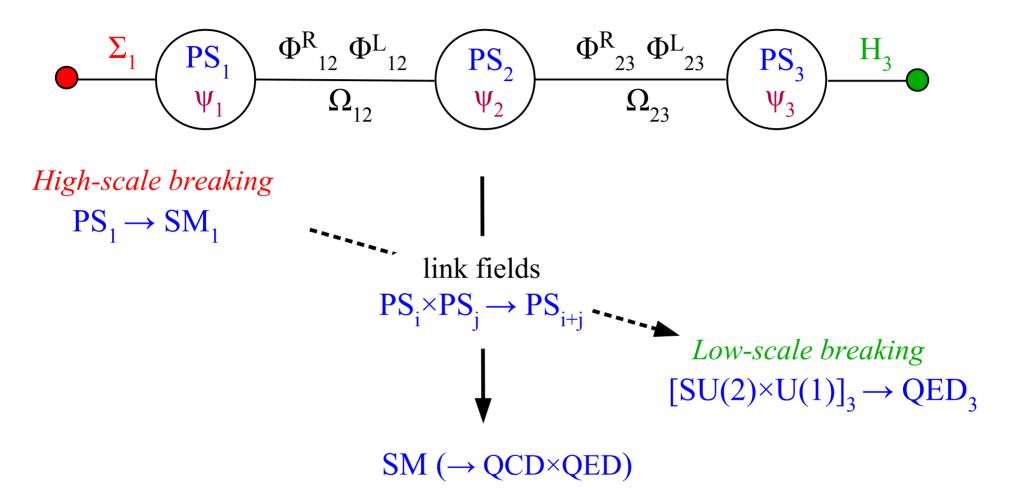

- Accidental U(2)⁵ flavor symmetry
- Natural structure of SM Yukawa couplings

Beyond the Flavour Anomalies – Durham, Apr. 2020

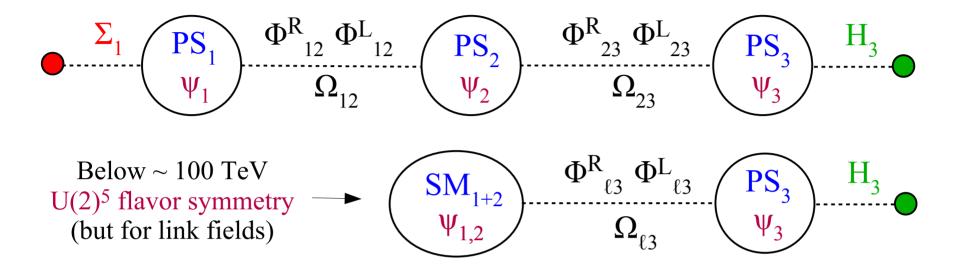
► <u>The PS³ model</u>

 $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

Bordone, Cornella, Fuentes-Martin, GI, '17

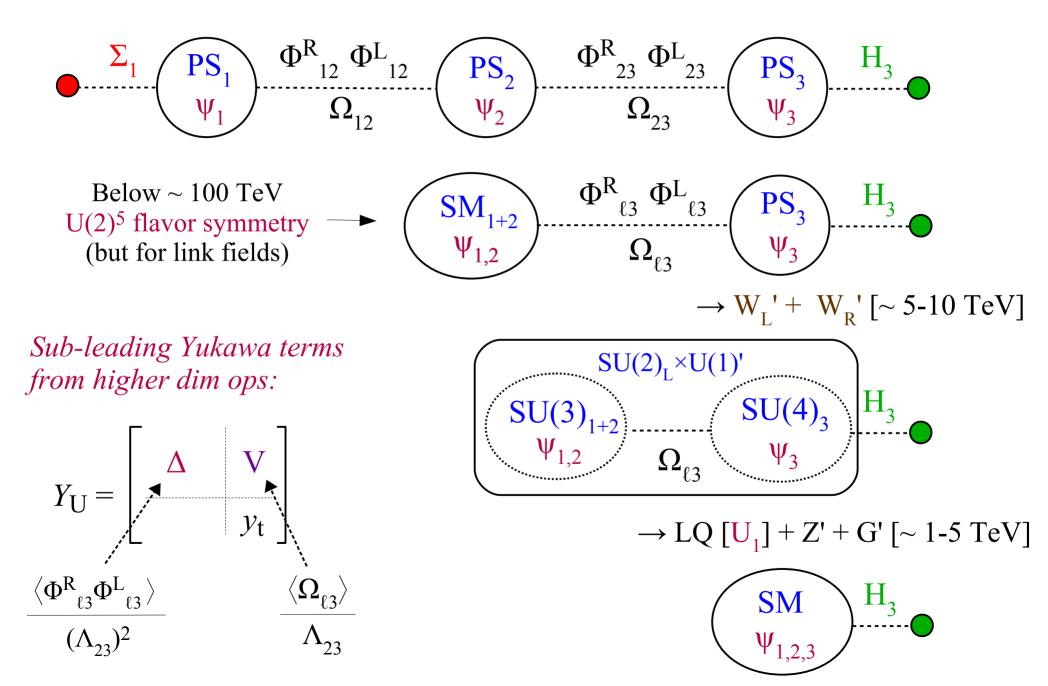


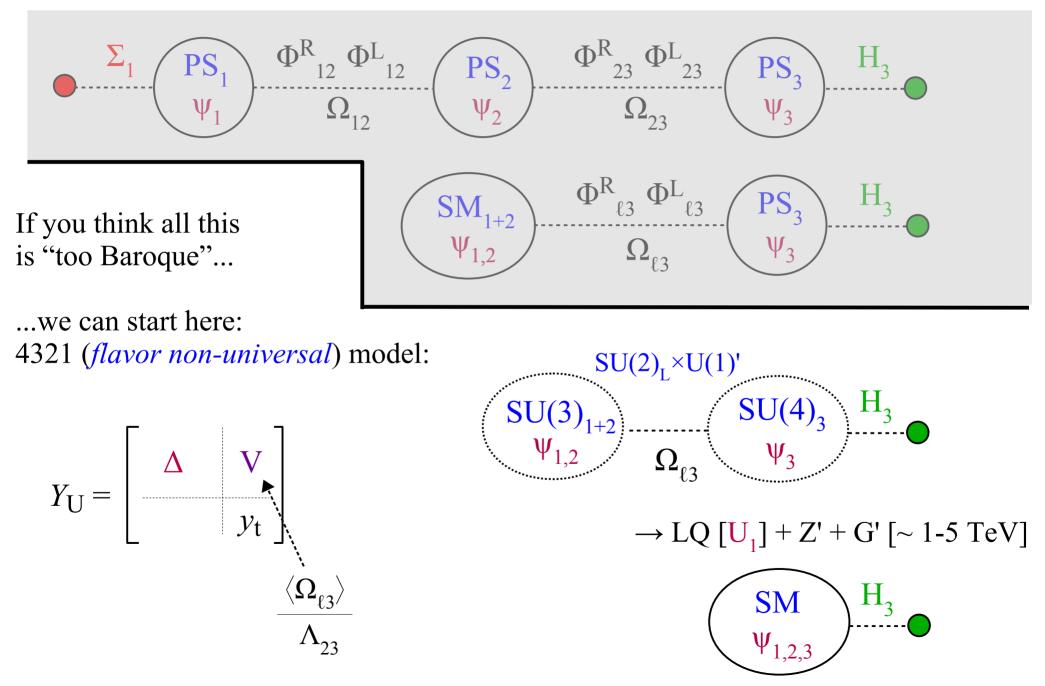
Unification of quarks and leptons


"De-unification" (= *flavor deconstruction*) of the gauge symmetry

This construction can find a "natural" justification in the context of models with extra space-time dimensions

The 4D description is apparently more complex, but it allow us to derive precise low-energy phenomenological signatures (*4D renormalizable gauge model*)




- * The breaking to the diagonal SM group occurs via appropriate "link" fields, responsible also for the generation of the hierarchy in the Yukawa couplings.
- * The 2-3 breaking gives a TeV-scale LQ [+ Z' & G'] coupled mainly to 3rd gen., as in the "4321" model [Di Luzio, Greljo, Nardecchia, '17]

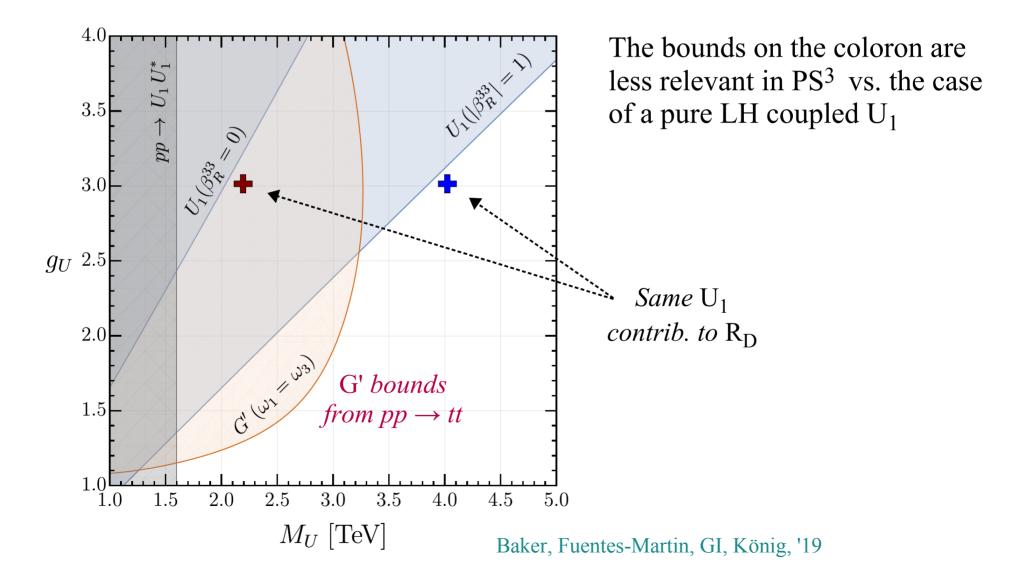
Leading flavor structure:

- Yukawa coupling for 3rd gen. only
- "Light" LQ field (from PS₃) coupled only to 3rd gen.
- U(2)⁵ symmetry protects flavorviolating effects on light gen.

Present collider and low-energy pheno are all controlled by the last-step in the breaking chain $[4321 \rightarrow SM]$

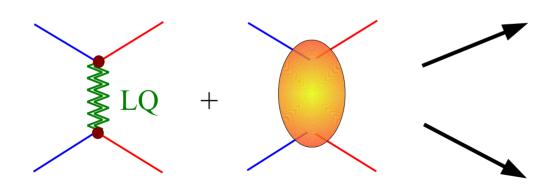
Despite the apparent complexity, the construction is highly constrained

Renormalizable structure (no d>5 ops) achieved with vector-like fermions


Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'
$q_L^{\prime i}$	1	3	2	1/6
$u_R^{\prime i}$	1	3	1	2/3 -1/3 -1/2 -1
$d_R'^i$	1	3	1	-1/3
$\ell_L'^i$	1	1	2	-1/2
$e_R^{\prime i}$	1	1	1	-1
ψ'_L	4	1	2	0
ψ'_u	4	1	1	1/2
ψ_d'	4	1	1	1/2 - 1/2
χ^i_L	4	1	2	0
χ^i_R	4	1	2	0
H_1	1	1	2	1/2
H_{15}	15	1	2	1/2
Ω_1	$\overline{4}$	1	1	-1/2
Ω_3	$ar{4}$	3	1	$1/2 \\ -1/2 \\ 1/6$
Ω_{15}	15	1	1	0
	$\begin{array}{c} q'^{i}_{L} \\ u'^{i}_{R} \\ d'^{i}_{R} \\ \ell'^{i}_{L} \\ e'^{i}_{R} \\ \psi'_{L} \\ \psi'_{u} \\ \psi'_{u} \\ \psi'_{d} \\ \chi^{i}_{L} \\ \chi^{i}_{R} \\ \hline H_{1} \\ H_{15} \\ \Omega_{1} \\ \Omega_{3} \end{array}$	$egin{array}{cccccccc} q_L'^i & 1 & & & \ u_R'^i & 1 & & \ d_R'^i & 1 & & \ \ell_L'^i & 1 & & \ \psi_L' & 4 & & \ \psi_L' & & & \ \psi$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c c c c c c c c } q_L'^i & 1 & 3 & 2 \ u_R'^i & 1 & 3 & 1 \ d_R'^i & 1 & 3 & 1 \ \ell_L'^i & 1 & 1 & 2 \ \ell_L'^i & 1 & 1 & 1 \ \ell_L'^i & 1 & 1 & 1 \ \psi_L' & 4 & 1 & 2 \ \psi_u' & 4 & 1 & 1 \ \psi_d' & 4 & 1 & 1 \ \chi_L^i & 4 & 1 & 2 \ \chi_R^i & 4 & 1 & 2 \ \chi_R^i & 4 & 1 & 2 \ H_{15} & 15 & 1 & 2 \ \Omega_1 & ar{4} & 1 & 1 \ \Omega_3 & ar{4} & 3 & 1 \ \end{array}$

 $\begin{array}{c|c} SU(4)_{3} \times SU(3)_{1+2} \times [SU(2)_{L} \times U(1)'] \\ \psi_{3} & \psi_{1,2} \end{array}$ $\langle \Omega's \rangle \longrightarrow LQ [U_{1}] + Z' + G' \\ [\sim 1-5 \text{ TeV}] \\ \hline \\ & \Psi_{1,2,3} \end{array}$

We can reproduce all the positive features the simplified model + Calculability of ΔF=2 processes [in agreement with present data in large area of param. space]


Greljo, Stefanek, '18; Di Luzio *et al.* '18; Cornella, Fuentes-Martin, GI, '19

A key difference between the simplified model and this complete UV model is the high-pT phenomenology, which now involves more states

A further important difference is that in a complete UV model we can compute precisely higher-order (quantum) corrections $\rightarrow \underline{fully\ predictive\ framework}$

Recent complete analysis of the leading NLO effects of $O(\alpha_4/\pi)$ on the four-fermion operators

Fuentes-Martin, GI, König, Selimovic, '19

20-40% <u>enhancement</u> of the lowenergy 4-fermion ops. compared to tree-level (*at fixed on-shell coupl.*) => <u>weaker high-energy constraints</u>

Unavoidable <u>breaking</u> of the treelevel relation $C^{(1)} = C^{(3)}$ for semilept. ops. (at ~10% level) $\Rightarrow unavoidable BSM contrib. to$ $B(B \rightarrow K^{(*)}vv)$ [10-100% vs. SM]

Conclusions

- The "B-physics anomalies" provide a <u>concrete demonstration</u> of the high discovery potential of flavor physics. Even if they will go away, they have been very beneficial in shaking some prejudices in model building and in (re-)opening new interesting directions.
 - If interpreted as NP signals, both set of anomalies are <u>not in contradiction</u> among themselves & with existing low- & high-energy data.
 <u>Taken together</u>, they point to NP coupled mainly to 3rd generation, with a flavor structure connected to that appearing in the SM Yukawa couplings.
 - Simplified models with LQ states seem to be favored. Among them, the U₁ case stands for simplicity & phenomenological success.
 The PS³ model is an interesting example of (a class of) UV framework(s) which could host it, and could help to shed light on "old" SM problems.
- To understand if any of the two statements above is correct...

... we desperately need more data !!!!!