Imperial College London

$R(D^{(*)})$ and others

Experimental status and prospects

Mark Smith April 2, 2020

Reminder

Lepton universality measurements:

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell^+\nu_{\ell})} \neq 1$$

- \neq 1 due to au^+ mass
 - Different phase space available
 - Extra form factor for the τ^+ mode
- NP at tree level
- Precise theory prediction
- Uncertainties cancel in ratio
 - Experimental and theoretical
- High experimental stats

 $\begin{array}{l} \mbox{Leptonic: } \tau^+ \rightarrow \ell^+ \overline{\nu}_\tau \nu_\ell \approx 17.4\% \\ \mbox{Hadronic: } \tau^+ \rightarrow n \pi \overline{\nu}_\tau \sim 10 - 25\% \end{array}$

Always partially reconstructed \rightarrow these are tricky analyses!

Status

$$R(D^{(*)})$$
 etc.

Belle

$0.7\,{\rm ab}^{-1}$ at the $\Upsilon(4S)-772\times10^6~B\bar{B}$

$$egin{aligned} P(B_{sig}) &= P_{beam} - P(B_{tag}) \ m_{miss}^2 &= ig(P(B_{sig}) - P_{vis}ig) \end{aligned}$$

- Hadronic tag full reconstruction of $P(B_{sig})$
- SL tag less kinematic constraint, higher efficiency
- Hermetic detector \rightarrow *ECL*
 - energy in calorimeter not from B_{tag} or B_{sig}
- Analyse charged and neutral B together

$1\,\text{fb}^{-1}$ at $7\,\mathrm{TeV},\,2\,\text{fb}^{-1}$ at $8\,\mathrm{TeV},\,6\,\text{fb}^{-1}$ at $13\,\mathrm{TeV}$

- P_B can only be found with approximations
- Irreducible partially reconstructed backgrounds
- Hardware trigger
- No neutrals
- Large B cross section
- Boosted B
- All hadron species make unique measurements

772 \times 10⁶ $B\bar{B}$ events, SL tag, $\tau^+ \to \ell^+ \overline{\nu}_\tau \nu_\ell$ Signal:

- 8 D^0 modes, 6 D^+ modes
- 2 D^{*+} modes, 1 D^{*0} mode
- BDT to separate signal and normalisation: m_{miss}^2 , E_{vis} , $\cos \theta_{B,D^{(*)}\ell}$

$$\cos \theta_{B,D^{(*)}\ell} = \frac{2E_{\text{beam}}E_{D^{(*)}\ell} - m_B^2 - m_{D^*\ell}^2}{2|\mathbf{p}_B||\mathbf{p}_{D^{(*)}\ell}|}$$

Belle 19

- 2D fit: BDT ECL
- 4 samples: $D^{(*)\pm}$

FIG. 2. E_{ECL} fit projections and data points with statistical uncertainties in the $D^+\ell^-$ (top) and $D^0\ell^-$ (bottom) samples, for the full classifier region (left) and the signal region defined by the selection class > 0.9 (right).

 $R(D) = 0.307 \pm 0.037 \pm 0.016$

Differential measurements

 $B \rightarrow D^* \ell \nu$ rate depends on:

- q^2 , $\cos \theta_\ell$, $\cos \theta_D$, χ
- More information than integrated rate!
- i.e. BaBar: [PRD 88, 072012 (2013)]

Belle 17

[PRD 97, 012004 (2018)]

Also D^* polarisation: $F_L(D^*) = 0.60 \pm 0.08 \pm 0.04$ [BELLE-CONF-1805] _{$R(D^{(*)})$ etc.} April 2, 2020 9 / 31

0.4 0.6 0.8

E_{FCI} (GeV)

1.2 1.4 E_{FCI} (GeV)

0.4 0.6 0.8

[PRL 115, 111803 (2015)]

$3 \, \text{fb}^{-1}$ at 7 & 8 TeV- $\tau^+ \rightarrow \mu^+ \overline{\nu}_\tau \nu_\mu$

• Make an approximation of velocity in *z*:

$$\gamma_z^B \beta_z^B \approx \gamma_z^{\rm vis} \beta_z^{\rm vis}$$

 $m_{vis}, \, p_T$ $\,$ $\,$ $\,$ Scale for B mass

$$p_z^B = \frac{m_B}{m_{vis}} p_z^{vis}$$

• Direction from PV and decay vtx

Variable	Definition	μ	au
m _{miss}	$\left(p_B - p_{vis}\right)^2$	peaks at 0	> 0
q^2	$(p_B - p_{D^*})^2$	$0\mathrm{MeV} < q^2 < 3270\mathrm{MeV}$	$m_\tau < q^2 < 3270{\rm MeV}$
E^*_{μ}	E_{μ} in B frame	hard	soft

[PRL 115, 111803 (2015)]

• 3D template fit.

Arbitrary units 0.15

0.05

- μ mis-ID and combinatorial taken from data.
- All other templates from simulation with systematic variations.
- Major backgrounds:
 - $B \rightarrow D^{**} \mu \nu$
 - $B \rightarrow D^{*+}X_c$, $X_c \rightarrow X\mu\nu$
 - Reduce with charged isolation.

11 / 31

[PRL 115, 111803 (2015)]

Major systematics:

- Simulation sample size \rightarrow reducible
- mis-ID sample size \rightarrow reducible
- $B \rightarrow D^* \tau \nu$ form-factor

[PRL 120, 171802 (2018)] [PRD 97, 072013 (2018)]

$3 \, {\rm fb}^{-1}$ at 7 & 8 TeV- $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}$

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \pi^+ \pi^- \pi^+)}$$

- Require external input to turn $K(D^*)$ into $R(D^*)$.
- Reconstructable τ decay vertex \rightarrow background reduction!
- BDT for $B \to D^{*+} X_c$
- Charged & neutral isolation
- Estimate *B* kinematics.

[PRL 120, 171802 (2018)] [PRD 97, 072013 (2018)]

LHCb

1.5

 $t_{\tau} [ps]$

3D template fit: q^2 , t_{τ} , BDT classifier:

Systematics:

- Simulation sample size
- Double charm background
- $D^{*-}3\pi X$ background
- $D^{**} \tau \nu_{\tau}$ feed-down

 $R(D^{*-}) = 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(BR)$

3 fb⁻¹ at 7 & 8 TeV-
$$\tau^+ \rightarrow \mu^+ \overline{\nu}_\tau \nu_\mu$$

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_{\mu})} = 0.71 \pm 0.17 \pm 0.18$$

 $R(J/\psi)$

- Compatible with SM at 2σ .
- Largest systematics from B_c → J/ψ form-factor and limited simulation sample size - both can be improved.
- Lattice calculations have arrived! See presentation here

Systematics

BaBar: [PRL 109, 101802(2012)]

	$B o D^{**} \ell u$	other bkg	MC stats
$\sigma R(D) \%$	5.8	4.9	2.6
$\sigma R(D^*)$ %	3.7	2.7	1.6

Belle (from Belle II physics book):

	Belle (Had, ℓ^-)	Belle (Had, ℓ^-)	Belle (SL, ℓ^-)	Belle (Had, h^-)
Source	R_D	R_{D^*}	R_{D^*}	R_{D^*}
MC statistics	4.4%	3.6%	2.5%	$^{+4.0}_{-2.9}\%$
$B \to D^{**} \ell \nu_{\ell}$	4.4%	3.4%	$^{+1.0}_{-1.7}\%$	2.3%
Hadronic ${\cal B}$	0.1%	0.1%	1.1%	$^{+7.3}_{-6.5}\%$
Other sources	3.4%	1.6%	$^{+1.8}_{-1.4}\%$	5.0%
Total	7.1%	5.2%	$^{+3.4}_{-3.5}\%$	$^{+10.0}_{-9.0}\%$

LHCb: [PRL 115, 111803 (2015)] & [PRL 120, 171802 (2018)]

Muonic	%		Hadronic	%
MC stats	6.0		MC stats	4.7
μ misID	5.4		D^*D bkg	3.9
$D^{**}\ell u$	2.1		$D^* 3\pi X$ bkg	3.9
$B ightarrow D^* au u$ FF	1.8		$D^{**} au u$	2.7
		$R(D^{(*)})$ etc.		April

April 2, 2020 16 / 31

$B ightarrow D^{**} \ell u$

[PRD 98, 012005 (2018)]

- Full data set, hadronic tag
- Full B kinematic
 - Template not so reliant on MC composition
- Still don't know which D^{**} states contribute

- $\label{eq:B} \begin{array}{l} \bullet \ \mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu) \\ = [4.55 \, \pm \, 0.27 \ ({\rm stat.}) \ \pm \ 0.39 \ ({\rm syst.})] \ \times 10^{-3}, \end{array}$
- $\mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu)$ = [4.05 ± 0.36 (stat.) ± 0.41 (syst.)]×10⁻³,
- $\mathcal{B}(B^+ \to D^{*-} \pi^+ \ell^+ \nu)$ = [6.03 ± 0.43 (stat.) ± 0.38 (syst.)]×10⁻³,
- $\mathcal{B}(B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu)$ = [6.46 ± 0.53 (stat.) ± 0.52 (syst.)]×10⁻³.

 $B \rightarrow D\mu^+ \nu_\mu X$ background significant source of uncertainty - measure it! Take B^- from $\bar{B}^*_{s2} \rightarrow B^- K^+$ and constrain B^- kinematics.

More $B \rightarrow D^{**}$ studies needed!

 $B \rightarrow D^{**} \ell \nu$

Some contradictions in measurement of composition

Belle: $\mathcal{B}(B^+ \to D'_1(2430)^0 \ell^+ \nu_\ell) \times \mathcal{B}(D'_1(2430)^0 \to D^{*+}\pi^-) < 0.07\%$ BaBar: $\mathcal{B}(B^+ \to D'_1(2430)^0 \ell^+ \nu_\ell) \times \mathcal{B}(D'_1(2430)^0 \to D^{*+}\pi^-) = 0.27\%$

Input from LHCb would be nice

Model dependence

HAMMER

[arXiv:2002.00020]

Reweight existing simulation from one physics model to another

Process	Form factor parametrizations
$B \rightarrow D^{(*)} \ell \nu$	ISGW2* [34, 35], BGL* [36-38], CLN* [‡] [39], BLPR [‡] [16]
$B \rightarrow (D^* \rightarrow D\pi) \ell \nu$	ISGW2*, BGL*1, CLN*1, BLPR1
$B \rightarrow (D^* \rightarrow D\gamma) \ell \nu$	ISGW2*, BGL* [‡] , CLN* [‡] , BLPR [‡]
$\tau \rightarrow \pi \nu$	_
$\tau \rightarrow \ell \nu \nu$	
$\tau \rightarrow 3\pi\nu$	RCT* [40-42]
$B \rightarrow D^*_* \ell \nu$	ISGW2*, LLSW* [43, 44],
	BLR^{\mp} [45, 46]
$B \rightarrow D_1^* \ell \nu$	ISGW2*, LLSW*, BLR [‡]
$B \rightarrow D_1 \ell \nu$	ISGW2*, LLSW*, BLR [‡]
$B \rightarrow D_2^* \ell \nu$	ISGW2*, LLSW*, BLR [‡]
$\Lambda_b \rightarrow \Lambda_c \ell \nu$	PCR* [47], BLRS [‡] [48, 49]
Planned for next release	
$B_{(c)} \rightarrow \ell \nu$	MSbar
$B \rightarrow (\rho \rightarrow \pi \pi) \ell \nu$	BCL*, BSZ
$B \rightarrow (\omega \rightarrow \pi \pi \pi) \ell \nu$	BCL*, BSZ
$B_c \rightarrow (J/\psi \rightarrow \ell \ell) \ell \nu$	
$\Lambda_b \rightarrow \Lambda_c^* \ell \nu$	PCR* , BLRS
$\tau \rightarrow 4\pi\nu$	RCT*
$\tau \rightarrow (\rho \rightarrow \pi \pi) \nu$	—

Table 3 Presently implemented amplitudes in the Hamer library, and corresponding form factor parametrizations. SM-only parametrizations are indicated by a * superscript. Form factor parametrizations that include linearized variations are denoted with a $\frac{1}{var}$ superscript. These are named in the library by adding a "var" suffix, e.g. "BGLVar".

Helicity Amplitude Module for Matrix Element Reweighting

Fig. 2 The $B \rightarrow D \tau \bar{\nu}$ (top) and $B \rightarrow D^* \tau \bar{\nu}$ (bottom) distributions in $|\mathbf{p}_i^*|$ and τ_{mins}^2 in the Asimov data set. The number of events correspond to an estimated number of reconstructed events at Belle II with $5 ab^{-1}$.

Would be nice to see in future analyses.

Where we are

BaBar and Belle:

- Full data sets analysed
- Measurements with hadronic and leptonic τ decays
- SL and hadronic tags
- First differential measurements

LHCb:

- Only Run 1 data published: 3 fb⁻¹
 - Only $R(D^{*+}) \& R(J/\psi)$ measured
 - Both hadronic and muonic τ decays
- $6 \, \text{fb}^{-1}$ of Run 2 data in hand
 - 12 fb⁻¹ Run 1 equivalent!
- $R(D) R(D^*)$ should arrive

Where can we go and how can we get there?

- $B_s \rightarrow D_s^{(*)}$
- $\Lambda_b \to \Lambda_c^{(*)}$
- $b \rightarrow u$
- $B \rightarrow D^{**}$

- Theory effort already
- Experimental effort already
 - FF parameters and $|V_{cb}|$ [arXiv:2001.03225]
 - FF parameters and unfolded *w* distribution [arXiv:2003.08453]
- Large sample already from LHCb
- Any expectations from Belle?
- Maybe Belle II?

- $B_s \rightarrow D_s^{(*)}$
- $\Lambda_b \to \Lambda_c^{(*)}$
- $b \rightarrow u$
- $B \rightarrow D^{**}$

- Theory effort already i.e. [PRD 99, 055008 (2019)]
- Experimental effort already
 - FF measurement
 [PRD 96, 112005 (2017)]
- Large sample already from LHCb
 - $\frac{f_{\Lambda_b}}{f_u + f_d} = 0.259 \pm 0.018$ [PRD 100, 032001 (2019)]

25 / 31

- $B_s \rightarrow D_s^{(*)}$
- $\Lambda_b \to \Lambda_c^{(*)}$
- $b \rightarrow u$
- $B \rightarrow D^{**}$

- $B_s \rightarrow D_s^{(*)}$
- $\Lambda_b \to \Lambda_c^{(*)}$
- $b \rightarrow u$
- $B \rightarrow D^{**}$

- Theory effort already for $B
 ightarrow \pi \ell
 u$
- R(π) waits for Belle II
 - Not feasible at LHCb

For LHCb:

- Maybe $B
 ightarrow
 ho \ell \nu$ if bkg can be dealt with
- Maybe $\Lambda_b \rightarrow p\ell \nu$ tricky
 - Already some theory from V_{ub} analysis
- Recent first observation of $B^+ \to p \bar{p} \mu^+ \nu_\mu$ [JHEP 13, 146 (2020)]
 - Minimal theory but experimentally feasible

- Well motivated theoretically i.e. [PRD 97, 075011 (2018)]
- Data from LHCb, Belle and Belle II

- $\Lambda_b \to \Lambda_c^{(*)}$
- $b \rightarrow u$
- $B \rightarrow D^{**}$

R(D^(*)) etc. April 2, 2020 27 / 31

Upgrade I: CERN-LHCC-2012-007

• Higher \mathcal{L}_{inst} , no L0 trigger

Upgrade II: CERN-LHCC-2017-003

• Improvements (i.e. protons)?

Contingent on:

- Simulation, i.e. Re-decay [EPJC 78, 1009 (2018)]
- Theory
- Backgrounds

Hopefully won't be measuring $R(D^{(*)})$ in 2040 Can LHCb measure angular observables?

- Not so promising resolution
- Large samples (but large bkg)
- Start with $B
 ightarrow D \mu
 u$
- Unfolding?

Approximate $\gamma_z^B \beta_z^B \approx \gamma_z^{vis} \beta_z^{vis} - B \rightarrow D^* \mu \nu$, $B \rightarrow D^* \tau \nu$, $\tau \rightarrow \mu \nu \nu$

Prospects - Belle II

[arXiv:1808.10567]

Expected $\mathcal{L}_{int} \sim 50 \, \mathrm{ab}^{-1}$

[PRD 92, 072014 (2015)] $\tan \beta / m_H = 0.5 \,\text{GeV}^{-1}$

Expected relative σ :

	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

 $R(D^*)$: Belle \approx 6%, LHCb 23 fb⁻¹ \approx 3%

R(D^(*)) etc. April 2, 2020 30 / 31

Summary

$R(D) - R(D^*)$ tension! $\sim 3 \sigma$

Present:

- Belle and BaBar data sets mostly exploited
- Still much to come from LHCb
 - Plus complementary modes

Future:

- Exciting prospects from Belle II
 - Will likely lead precision on the ratios + $R(\pi)$
 - Differential measurements
- LHCb will be important
 - Competitive ratio precision
 - Potentially angular measurements?

These are exciting times

BACKUP

DON'T LOOK HERE

NOTHING TO SEE HERE