New Physics explanations of neutral current *B*-anomalies

Joe Davighi, DAMTP, University of Cambridge

Beyond the flavour anomalies, IPPP, Durham (April 2020)

Plan for this talk

- Focus on two general features of the *B*-anomaly measurements:
 - Third family alignment
 - Preservation of SM accidental symmetries
- Will discuss three model-building frameworks that are guided by these two features, and look at their broad implications e.g. for future measurements
- Will focus on models for the neutral current *B*-anomalies (even though the two features above are shared by the charged current anomalies)

"Four" categories of anomaly

Neutral current BRs

• BRs:

 $B \to K^{(*)}\mu\mu, B_s \to (\varphi)\mu\mu$

Neutral current angular

• P'_5 ($B \rightarrow K^* \mu \mu$) etc. (n.b. 2020 LHCb update)

Neutral current LFUV

• R_K , R_{K^*}

Charged current LFUV

• R_D , R_{D^*}

We focus on $b \rightarrow sll$ system

For models that address all four categories, see Gino's talk

Joe Davighi, DAMTP - Beyond the flavour anomalies, IPPP

Reboud, Stangl, Straub, 2019

Joe Davighi, DAMTP - Beyond the flavour anomalies, IPPP

Global fits to WET coefficients

- Again including $b \rightarrow s\mu\mu$ locates elliptical fit region, and drives $C_9 < 0$
- Here LFUV internally consistent with $b \rightarrow s \mu \mu$

Alguero, Capdevila, Crivellin, Descotes-Genon, Masjuan, Matias, Virto 2019

WET \rightarrow SMEFT \rightarrow Models

Good fit for $C_9 = -C_{10}$, i.e. *LL* chirality operator. Match to SMEFT operators,

 $(\bar{Q}_i\gamma^{\mu}Q_j)(\bar{L}_{\alpha}\gamma_{\mu}L_{\beta}), \qquad (\bar{Q}_i\gamma^{\mu}\sigma^a Q_j)(\bar{L}_{\alpha}\gamma_{\mu}\sigma^a L_{\beta})$

These 4-fermi operators could arise from integrating out a heavy particle

Tree-level mediators: Mass/g ~3 TeV/0.1

Tree-level mediators: Mass/g ~3 TeV/0.1

E.g. spontaneouslybroken U(1). Anomaly-free? Light scalar - how? Why no proton decay due to $\overline{Q^c}S_3Q$? Non-renormalizable; UV completions? E.g. PSbased models, "4321",... [... or new physics in **Loops** - push down mass of BSM mediator to as low as O(100 GeV) scale ...]

Guiding principles

A. Third family (quark) alignment

- No anomalies (NC or CC) in kaon/ pion/ charm physics only in bottom physics
- Indirect evidence: absence of NP in high- p_T searches suggests couples weakly to valence quarks
- **Symmetry** reason for alignment?

Guiding principles

A. Third family (quark) alignment

- No anomalies (NC or CC) in kaon/ pion/ charm physics only in bottom physics
- Indirect evidence: absence of NP in high- p_T searches suggests couples weakly to valence quarks
- Symmetry reason for alignment? E.g. Third Family Z', PS^3 , ...

Bordone, Cornella, Fuentes-Martin, Isidori, 2018

Guiding principles

A. Third family (quark) alignment

- No anomalies (NC or CC) in kaon/ pion/ charm physics only in bottom physics
- Indirect evidence: absence of NP in high- p_T searches suggests couples weakly to valence quarks
- Symmetry reason for alignment? E.g. Third Family Z', PS^3 , ...

B. Anomalies respect the SM accidental symmetries

- Why LFUV but no LFV? Very stringent bounds on e.g. $l \rightarrow l'\gamma, Z \rightarrow ll', l \rightarrow l'l'l'$, ...
- Also risk of baryon number violation e.g. in LQ models

Inspired by principles A. and B., will discuss three frameworks:

A. _____
A. _____
D. _____
D.

[n.b. none of these "frameworks" are based on flavour structures of the kind discussed by Claudia and Gino e.g. $U(2)^5$]

1. Rank One Flavour Violation

A systematic parametrization of how much NP can depart from third family alignment, assuming NP is of the form:

$$C_{S}^{ij}(\bar{Q}_{i}\gamma^{\mu}Q_{j})(\bar{L}_{2}\gamma_{\mu}L_{2}) + C_{T}^{ij}(\bar{Q}_{i}\gamma^{\mu}\sigma^{a}Q_{j})(\bar{L}_{2}\gamma_{\mu}\sigma^{a}L_{2}) + C_{R}^{ij}(\bar{Q}_{i}\gamma^{\mu}Q_{j})(\bar{e}_{2}\gamma_{\mu}e_{2}),$$
where $C_{S,T,R}^{ij} = C_{S,T,R}\hat{n}^{i}\hat{n}^{j*}$

$$\hat{n} = \begin{pmatrix} \sin\theta\cos\phi e^{i\alpha_{bd}} \\ \sin\theta\sin\phi e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$$
Gherardi, Marzocca, Nardecchia, Romanino, 2019

u

ф

1. Rank One Flavour Violation

This "model-independent" framework is *not* an assumption about flavour structure, but rather an assumption about <u>underlying dynamics</u> that includes many popular models:

- All single leptoquark models
- Some Z' models e.g. gauged $L_{\mu} L_{\tau}$

Altmannshofer, Gori, Pospelov, Yavin, 2014

• Loop models in which flavour violation is linear in quark fields Grip

Gripaios, Nardecchia, Renner, 2016

Simplified model	Spin	SM irrep	(c_S, c_T, c_R)
S_3	0	$(\overline{3}, 3, 1/3)$	(3/4, 1/4, 0)
U_1	1	(3, 1, 2/3)	(1/2, 1/2, 0)
U_3	1	(3, 3, 2/3)	(3/2, -1/2, 0)
V'	1	(1, 3, 0)	(0, 1, 0)
Z'	1	(1, 1, 0)	$(1,0,c_R)$

1. Rank One Flavour Violation

The idea is to constrain the possible directions \hat{n} by using other precision flavour observables, which are necessarily "disturbed" from their SM predictions

How far can we deviate from TF alignment?

$$\hat{n} = \begin{pmatrix} \sin\theta\cos\phi\,e^{i\alpha_{bd}} \\ \sin\theta\sin\phi\,e^{i\alpha_{bs}} \\ \cos\theta \end{pmatrix}$$

E.g. for $C_R = 0$, constraints from $d_i \rightarrow d_j \mu^+ \mu^-$ only: (*bs* coupling is everywhere fitted to *B*-anomalies)

19

Bring in further constraints by $SU(2)_L$ invariance, i.e. up-type quark transitions and muon neutrino processes – but model dependent.

One message from ROFV:

you cannot deviate too much from third-family alignment without being squeezed by other precision flavour bounds We will discuss three frameworks:

- 1. Rank One Flavour Violation
- 2. Third family Z' models
- 3. Gauging accidental SM symmetries

2. Third Family Z' models – Part I

Let's start very simple:

- Suppose there is a Z' coupled only to third family in weak eigenbasis
- Cancelling gauge anomalies then fixes charges uniquely

$$\begin{array}{cccc} F_{Q_i'} = 0 & F_{u_{R_i'}} = 0 & F_{d_{R_i'}} = 0 & F_{L_i'} = 0 \\ F_{e_{R_i'}} = 0 & F_H = -1/2 & F_{Q_3'} = 1/6 & F_{u_{R_3}'} = 2/3 \\ F_{d_{R_3}'} = -1/3 & F_{L_3'} = -1/2 & F_{e_{R_3}'} = -1 & F_{\theta} \neq 0 \end{array}$$

... this is just third family hypercharge

Allanach & JD, 2018

2. Third Family Z' models – Part I

Let's start very simple:

- Suppose there is a Z' coupled only to third family in weak eigenbasis
- Cancelling gauge anomalies then fixes charges uniquely

$$\begin{array}{cccc} F_{Q_i'} = 0 & F_{u_{R_i'}} = 0 & F_{d_{R_i'}} = 0 & F_{L_i'} = 0 \\ F_{e_{R_i'}} = 0 & F_{H} = -1/2 & F_{Q_3'} = 1/6 & F_{u_{R_3}'} = 2/3 \\ F_{d_{R_3}'} = -1/3 & F_{L_3'} = -1/2 & F_{e_{R_3}'} = -1 & F_{\theta} \neq 0 \end{array}$$

... this is just third family hypercharge

Allanach & JD, 2018

Simple connection to flavour problem?

Only third family have renormalizable Yukawa couplings

(Z' model itself a low-energy EFT)

- $\,\circ\,$ Expect third family hierarchically heavy
- $\,\circ\,$ Expect 1-3 and 2-3 quark mixing angles small

[If only an EFT, why bother with anomaly cancellation?

- Don't need to include Wess-Zumino-Witten terms in low-energy theory
- Can build a UV completion by adding only vector-like fermions, for which we can easily write down mass terms
- If the Z' theory were anomalous, would need massive chiral fermions to cancel anomalies in UV difficult not to break $SU(2)_L$ prematurely

Phenomenology

Third Family Z' models – Part II

- Also charge 2nd family leptons under $U(1)_X$, to avoid large μ/τ mixing (LFV)
- Linear anomaly cancellation equations fix:

 $F_{Q_3} = 1$, $F_{u_3} = 4$, $F_{d_3} = -2$, $F_{L_2} + F_{L_3} = -3$, $F_{e_2} + F_{e_3} = -6$

The quadratic anomaly equation becomes*

$$\left(F_{e_2} - F_{e_3}\right)^2 - \left(F_{L_2} - F_{L_3}\right)^2 = 27$$

• which has a **unique** non-trivial solution in the integers:

$$14^2 - 13^2 = 27$$

Allanach & JD, 2019

*cubic anomaly equation is automatically satisfied

Third Family Z' models – Part II

- "Deformed TFHM" charge assignment:
 - $F_{Q'_1} = 0$ $F_{u_{R_{1}}'} = 0$ $F_{d_{R_1'}} = 0$ $F_{Q_{2}'} = 0$ $F_{d_{R_{2}}'} = 0$ $F_{u_{R_{2}}'} = 0$ $F_{Q'_3} = 1/6$ $F_{u'_{R3}} = 2/3$ $F_{d'_{R3}} = -1/3$ $F_{H} = -1/2$ $F_{L_{1}'} = 0$ $F_{e_{R_{1}}'} = 0$ $F_{L'_2} = 5/6$ $F_{L'_3} = -4/3$ $F_{e_{R_2'}} = 2/3$ F_{θ} $F_{e'_{R3}} = -5/3 \quad \rightarrow C_9 = -9C_{10}$
- No longer allows any charged lepton Yukawas → all non-renormalizable

This model probes a novel combination of Wilson coefficients,

 $C_9 = -9C_{10}$ [fixed uniquely by anomaly cancellation]

Using contours from Straub et al'19, we find point on the red-line that minimizes χ^2 - pull of 5.9 σ w.r.t. SM

- Slightly worse fit than for LH coupling
- Better fit than for vector coupling

Phenomenology

White region allowed (95% C.L.); valid parameter space for $M_{ZI} > 0.8$ TeV

Example case couplings:

 $V_{d_L} = CKM$ $V_{\nu_L} = (PMNS)^*$ Other mixing matrices = 1

Allanach & JD, 2019

Joe Davighi, DAMTP - Beyond the flavour anomalies, IPPP

M_{Z'}/TeV

Third Family Z' model predictions High p_T Low p_T

- Z' decays mainly to third generation fermions. Branching ratios:
- 1. TFHM: $t\bar{t}$ (42%), $\tau^{+}\tau^{-}$ (30%), $b\bar{b}$ (12%), $\mu^{+}\mu^{-}$ (8%), neutrinos (8%)
- 2. DTFHM: $\tau^+\tau^-$ (46%), neutrinos_ (25%), $t\bar{t}$ (14%), $\mu^+\mu^-$ (11%), $b\bar{b}$ (4%),

As well as dimuon, important decays to tops and tauons

LFUV of *Z* **couplings** to *e* vs. μ ; FCC-ee would close parameter space with huge lumi *Z* production

New physics in tau

e.g. BSM contributions to $BR(B \rightarrow K^{(*)}\tau^{+}\tau^{-})$

[a challenging direct measurement at LHCb, but see Claudia/Sam's talk for 3 ways to constrain it going forward]

Different patterns for angular observables esp. from $C_9 = -9C_{10}$ combination We will discuss three frameworks:

- 1. Rank One Flavour Violation
- 2. Third family Z' models
- 3. Gauging accidental SM symmetries

Recall our second "guiding principle":

B. Anomalies respect the SM accidental symmetries

- $U(1)_B$, $U(1)_e$, $U(1)_{\mu}$, $U(1)_{\tau}$ extremely well-tested symmetries of Nature*
- Why LFUV but no LFV? Very stringent bounds on e.g. $l \rightarrow l' \gamma, Z \rightarrow ll', l \rightarrow l' l' l', ...$
- Also risk of baryon number violation e.g. in LQ models

3. Gauging the accidental symmetries of the SM

- The idea: $U(1)_B$, $U(1)_e$, $U(1)_{\mu}$, $U(1)_{\tau}$ remain accidental symmetries of BSM theory.
- Want to ban all renormalizable terms in \mathcal{L} that would violate any of these U(1)s.

3. Gauging the accidental symmetries of the SM

- Simplest way to do this is by gauging a linear combination of these accidental symmetries.
- In particular, gauge $U(1)_X$, where

$$T_X = a_e T_{L_e} + a_\mu T_{L_\mu} + a_\tau T_{L_\tau} - \left(\frac{a_e + a_\mu + a_\tau}{3}\right) a_B + a_Y T_Y,$$

4 rational parameters $\{a_e, a_\mu, a_\tau, a_Y\}$

• This can always be made anomaly-free if allow up to three SM singlet chiral fermions (e.g. RH neutrinos) to soak up gravity & $[U(1)_X]^3$ anomalies:

$$A_{\text{grav}} = a_e + a_\mu + a_\tau - \sum_{i=1}^3 \hat{Q}_{\nu^i} \qquad \qquad A_{\text{cubic}} = a_e^3 + a_\mu^3 + a_\tau^3 - \sum_{i=1}^3 \hat{Q}_{\nu^i}^3$$

See also Salvioni, Strumia, Villadoro, Zwirner, 2010 ³⁶

LFUV without LFV

Yukawas allowed by this gauge symmetry (assuming a_e , a_μ , a_τ all different):

$$Y_{U,D} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix},$$

$$Y_E = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix},$$

 $U(1)_X$ is **most general** anomaly-free choice that allows these Yukawa textures at renormalizable level

Mass eigenbasis = Weak eigenbasis, \therefore no LFV from Z' couplings (as expected, because $U(1)_X$ protects individual lepton numbers)

Explaining the *B*-anomalies

Z' couplings to bs generated by coupling through heavy vector-like quarks

 $\mathcal{L}_{\rm mix} = -m_Q \overline{Q} Q + (Y_{Qi} \overline{q}_L^i Q_R \Phi + \text{h.c})$

$$T_X = a_Y T_Y + a_e T_{L_e} + a_\mu T_{L_\mu} + a_\tau T_{L_\tau} - \left(\frac{a_e + a_\mu + a_\tau}{3}\right) a_B$$

This framework leads to a particular structure for the anomalies:

1. The LFUV must come entirely from the vector current

$$C_9^{\alpha} = -\frac{Y_{Qb}Y_{Qs}^*}{2m_Q^2} \left(a_{\alpha} - \frac{3}{4}a_Y\right),$$

$$C_{10}^{\alpha} = \frac{Y_{Qb}Y_{Qs}^{*}}{8m_{Q}^{2}}a_{Y}.$$

2. An axial contribution must be lepton flavour universal, and requires $a_Y \neq 0$; hence Z' coupling to Higgs. Immediate consequences:

- Z-Z' mixing, hence LEP constraints on Z boson LFUV
- Z' couples to valence quarks, hence enhanced pp production at LHC

Phenomenology

We fit to the *B*-anomaly data in flavio, with $a_{\mu} = 1$ and $a_{\tau} = 0$. Recall $T_X = a_Y T_Y + a_e T_{L_e} + a_{\mu} T_{L_{\mu}} + a_{\tau} T_{L_{\tau}} - \left(\frac{a_e + a_{\mu} + a_{\tau}}{3}\right) a_B$

Phenomenology

At best-fit point, passes bounds from:

- LHC searches
 - B_s mixing

•

•

- EW precision
- Neutrino trident
- Strong push to include a **flavour-universal axial** component $a_Y \neq 0$, $a_Y \approx a_\mu$ (probably to push muon coupling closer to LH given 2019 data)
- This unavoidably leads to tight constraints from direct search & EW precision, e.g. ρ -parameter
- Favour some **NP** in electron ($a_e \neq 0$ also)

Conclusions

Two obvious but intriguing features in the *B*-anomaly data:

A. Third family alignment

B. Respect SM accidental symmetries

Welcome any measurements that refine this hypothesis e.g. $B \rightarrow K \tau \mu, B \rightarrow K \mu e^{}$

Explore the consequences of these features using simple frameworks

- \rightarrow find general patterns of experimental signatures:
- 1. Rank-one flavour violation \rightarrow precision flavour constraints
- 2. Third Family Z' models \rightarrow *third family decays*
- 3. Gauging SM accidental symmetries → *electroweak precision constraints*

Backup

Example case mixing matrices from a Froggatt-Nielsen-type mechanism

Eg: how to achieve $V_{u_L} = V_{u_R} = 1$? Clearly breaks $U(2)_Q \times U(2)_U$

1.
$$M_{\tilde{u}} \sim \frac{1}{10} M_{\tilde{Q}} \to m_u \sim \frac{1}{1000} m_c$$

2. If no fundamental interactions $\overline{u_1}H\tilde{Q}_L^{+\frac{3}{6}}$ or $\tilde{u}_R^{+\frac{3}{6}}HQ_2$ present, then offdiagonal Yukawas ~0.

> Froggatt & Nielsen, 1979 Allanach & JD, 2019