

Experimental challenges for future angular and amplitude measurements

R. Silva Coutinho

Universität Zürich - SNF Ambizione

Beyond the Flavour Anomalies workshop April 2nd, 2020

Funded by

[JHEP 10 (2019) 236]

ular analysis?

The (in)famous $B^0 \rightarrow K^{*0}[K^+\pi^-]l^+l^-$ decay

[LHCb-PAPER-2020-002, arXiv: 2003.04831]

The song remains the same (?) ...

Overall tension with SM remains at the same level

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ prospects

Update with full Run-II underway, but what next?

Bias correction

< 0.02

< 0.03

Universität Zürich^{uzH}

Strategies to improve signal resolution: "constraint" q^2

Cutting on the q^2 with B^0 primary vertex and B^0 mass constraint allows for the extension of the analysis range up to 7.0 GeV²/c⁴

Also reduces potential "bin migration"!

Possible backgrounds:

- $B^+ \rightarrow K^+ e^+ e^-$
- Double semi-leptonic
- Partially reconstructed (e.g. K₁)
- Combinatorial

What comes Next?

From binned to unbinned ...

Direct fits to Wilson Coefficients

[Eur. Phys. J. C (2018) 78: 453] [Eur. Phys. J. C, 78 6 (2018) 451, JHEP 10 (2019) 236]

What about electrons?

[Phys. Rev. D 99, 013007 (2019)]

If we are underestimating $c\bar{c}$ contributions then naively expect to see the shift in C₉ get larger closer to the narrow charmonium resonances.

No clear evidence for a rise in the data (but more data is needed)

Observables integrated in q² bins are largely theory independent, so important information is lost

- Determination of long-distance contributions
- Improve sensitivity in the measurement

Two approaches at LHCb, *e.g.* for $B^0 \rightarrow K^{*0}\mu^+\mu^- (\lambda = \bot, I, 0)$:

$$\mathcal{A}_{\lambda}^{(\ell) L,R} = \mathcal{N}_{\lambda}^{(\ell)} \left\{ \left[(C_9^{(\ell)} \mp C_{10}^{(\ell)}) \mathcal{F}_{\lambda}(q^2) \right] + \frac{2m_b M_B}{q^2} \left[C_7^{(\ell)} \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

- Wilson coefficients [observables]
- Form factors
- Mon-local hadronic contributions

["Isobar"-like approach]

LHCb, Eur. Phys. J. C (2017) 77: 161, Blake et al, Eur. Phys. J. C (2018) 78: 453

[z-expansion approach]

Eur. Phys. J. C, 78 6 (2018) 451, arXiv:1805.06378

Amplitude analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

[EPJ C77 (2017) 161]

Fit to full di-muon mass spectrum including: ρ , ω , φ , J ψ , ψ (2S), ψ (3770), ψ (4040), ψ (4160), ψ (4415)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2 \alpha^2 |V_{tb} V_{ts}^*|^2}{128\pi^5} |\mathbf{k}| \beta \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta^2 \left| \mathcal{C}_{10} f_+(q^2) \right|^2 + \frac{4m_\mu^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10} f_0(q^2) \right|^2 + \left| |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta^2 \right] \left| \mathcal{C}_9 f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\}$$

Breit-Wigners

$$C_9^{\text{eff}} = C_9 + \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2)$$

Magnitude and phase of each
resonance relative to C₉

Fit suggested J/ψ has little impact outside the region

[EPJ C78 (2018) 453]

$$\mathcal{A}_{\lambda}^{(\ell) \ L,R} = \mathcal{N}_{\lambda}^{(\ell)} \left\{ (C_{9}^{(\ell)} \mp C_{10}^{(\ell)}) \mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \left[C_{7}^{(\ell)} \mathcal{F}_{\lambda}^{T}(q^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \right] \right\}$$

$$\mathcal{G}_{\lambda}(q^{2})$$

$$\mathcal{G}_{0} = \frac{m_{b}}{m_{B} + m_{K^{*}}} T_{23}(q^{2}) \underbrace{\zeta^{0} e^{i\omega^{0}}}_{j} + A_{12}(q^{2}) \underbrace{\sum_{j} \eta_{j}^{0} e^{i\theta_{j}^{0}} A_{j}^{\mathrm{res}}(q^{2})}_{j}$$

$$\mathcal{G}_{\parallel} = \frac{2m_{b}}{q^{2}} T_{2}(q^{2}) \underbrace{\zeta^{\parallel} e^{i\omega^{\parallel}}}_{m_{B} - m_{K^{*}}} \underbrace{\sum_{j} \eta_{j}^{\parallel} e^{i\theta_{j}^{\parallel}} A_{j}^{\mathrm{res}}(q^{2})}_{j}$$

$$\mathcal{G}_{\perp} = \frac{2m_{b}}{q^{2}} T_{1}(q^{2}) \underbrace{\zeta^{\perp} e^{i\omega^{\parallel}}}_{m_{B} + m_{K^{*}}} \underbrace{\sum_{j} \eta_{j}^{\perp} e^{i\theta_{j}^{\perp}} A_{j}^{\mathrm{res}}(q^{2})}_{j}$$
Magnitude and phase of non-local contribution to dipole form factor
$$\mathcal{A}_{\mu} = \mathcal{A}_{\mu}^{0} \mathcal{A}_{\mu}^{0$$

e.g.: $\rho^{\circ}, \phi(1020), J/\psi, \psi(2S), \psi(3770), \psi(4040), \psi(4160)$

Existing angular analyses and BFs of $B \rightarrow VK^{*0}$ can constrain two phases and all magnitudes

[EPJ C78 (2018) 453]

Run-II dataset will provide strong constraint on phases, but no improvements on FFs

Nominal model can be affected by several contributions:

- ✤ Broad continuum heavy cc̄ states [arXiv:2001.04470]
- Heavier states
- Other non-resonant contributions (?)

Decay	% of $B^+ ightarrow K^+ \mu^+ \mu^-$	$\overline{300}_{\text{E}} + \overline{100}_{\text{E}} + \overline{100}_{\text{E}$
Penguin	0.6 %	$\underset{\sim}{\sim}_{250} \stackrel{\text{E}}{=} \text{LHCb}$
$B^+ o ho K^+$	0.0003 %	
$B^+ ightarrow \omega K^+$	0.0006 %	$\sum 200$ F — total for total
$B^+ o \phi K^+$	0.003 %	150 resonances
$B^+\! ightarrow J\!/\psiK^+$	92 %	background
$B^+ o \psi(2S) K^+$	7.3%	
$B^+ o \psi$ (3770) K^+	0.007 %	
$B^+ o \psi$ (4040) K^+	\sim 0 %	
$B^+ o \psi$ (4160) K^+	0.005 %	
$B^+ o \psi$ (4415) K^+	\sim 0 %	300 -50 1000 2000 3000 4000
		$m_{\mu\mu}^{\rm rec} [{\rm MeV}/c^2]$

Full q² spectrum is used, hence contributions from exotic states $B^0 \to K^+Z^-(\to \psi^{(')}\pi^-)$

Studied as systematic uncertainty

- Generate toys including exotic states (including interference with non-local and penguin)
- Fit back with our model ignoring the exotic states
- Impact on the Wilson coefficients is negligible
- Dominant uncertainty on phase difference of J/ψ and $\psi(2S)$ at the level of 10mrad
- Note that similarly this affects the external parameters for other models

Parametrisation suggested in [Eur. Phys. J. C, 786 (2018) 451]:

$$\mathcal{A}_{\lambda}^{(\ell) L,R} = \mathcal{N}_{\lambda}^{(\ell)} \left\{ \left[(C_9^{(\ell)} \mp C_{10}^{(\ell)}) \mathcal{F}_{\lambda}(q^2) \right] + \frac{2m_b M_B}{q^2} \left[C_7^{(\ell)} \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

[JHEP 10 (2019) 236]

First attempt to study the effect of the theory constraints cut-off

- Signal yield related to the BR
- CKM/FF are floating/gaussian constrained parameters and H are free

[z-parametrisation] $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

Combined amplitude fit: [semi-muonic $B \to K^*\mu\mu$ decays] [theory points at negative q^2] [hadronic $B \to K^*\{J/\psi, \psi(2S)\}$]

LHCb Upgrade [50 fb ⁻¹]						
	3 8	$\operatorname{Re}\mathcal{C}_9^{\operatorname{NI}}$	^P mean	$\operatorname{Re} \mathcal{C}_9^{\mathrm{NI}}$	^P sigma	
z^2 fit		-0.996	± 0.003	0.060	± 0.002	
z^3 fit		-1.015	± 0.006	0.124	± 0.004	
z^4 fit		-1.012	± 0.007	0.146	± 0.005	
z^5 fit		-0.983	± 0.008	0.157	± 0.006	

- + unbiased central value
- statistical uncertainty slightly increasing
 - effect strongly mitigated by the introduction of the theory constraints

studying the behaviour of the series expansion at different order allows to access in a quantitative way this model-dependency

[z-parametrisation] $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

gen. cg = -1	$\operatorname{Re} \mathcal{C}_9^{\operatorname{NP}}$ mean	$\operatorname{Re} \mathcal{C}_9^{\operatorname{NP}}$ sigma	
z^2 fit	-1.824 ± 0.003	0.063 ± 0.002	wrong order - CoNP is biosod!!!
z^3 fit	-1.188 ± 0.005	0.103 ± 0.004	wrong order - Cg ^m is blased!!!
z^4 fit	-1.018 ± 0.006	0.119 ± 0.004	Tright order or higher - mean OK
z^5 fit	-0.985 ± 0.007	0.141 ± 0.005	Ingrit order of higher — mean OK

[A. Mauri PhD Thesis]

- uncertainty slightly increase for fit with order higher than z³
- uncertainty saturates due to the form factors after LHCb Upgrade

C_9 and C_{10} vs FF and charm-loop interplay

[EPJ C78 (2018) 453]

Angular observables can also discriminate between different phases

[JHEP 10 (2019) 236]

Similarly to the isobar approach, classical angular observables can be a posteriori calculated

- Signal only ToyMC (no background, acceptance or systematics)
- Independent on the the truncation of the *z*-expansion!

One of the interesting features of the anomalous pattern seen in FCNC transitions is the connection between P_5 and R_{K^*}

Currently, this link is *only* visualised in global fit analyses

First steps towards an experimental direct connection, *i.e.* probes of LFU in observables

One of the interesting features of the anomalous pattern seen in FCNC transitions is the connection between P_5 and R_{K^*}

Currently, this link is *only* visualised in global fit analyses

First steps towards an experimental direct connection, or combining both angular and branching ratio information

$$D_i(q^2) \equiv \frac{\mathrm{d}\mathcal{B}^{(e)}}{\mathrm{d}q^2} S_i^{(e)}(q^2) - \frac{\mathrm{d}\mathcal{B}^{(\mu)}}{\mathrm{d}q^2} S_i^{(\mu)}(q^2)$$

[PRD 95, 035029 (2017)]

- Still limited to the individual μ/e analyses
 (*e.g.* cannot share F_L observable)
- Provide set of independent observables,
 e.g. related to P'₅ and A_{FB}, that can be
 combined and provide higher sensitivity

Simultaneous unbinned analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0 \to K^{*0} e^+ e^-$

$$\mathcal{C}_{9}^{(e)} = \mathcal{C}_{9}^{\mathrm{SM}} = \mathcal{C}_{9}^{(\mu)} + 1$$

 $C_i^{(\ell)}$: strongly dependent on the model assumption (renamed for simplicity)

Key feature: model-independent determination of the difference between electron and muons WCs

$$\Delta \mathcal{C}_i = \widetilde{\mathcal{C}}_i^{(\mu)} - \widetilde{\mathcal{C}}_i^{(e)}$$

- Insensitive to the parametrisation of the non-local contributions
- Significance wrt LFU hypothesis is unbiased

Determination of ΔC_i is stable and model-independent \rightarrow early first observation of LFU violation can be obtained with LHCb Run II dataset in B \rightarrow K^{*}*l*+*l*- decays

Notice that the classical binned observables can also be retrieved by this method

Similar to the muonic case this analysis will provide more precise results

Release nothing and proceed anyway.

No risk of data mis-use.

No extra work.

Cannot update when hadronic information improves

Ultimate sensitivity is lost.

Release backgroundsubtracted data. Not much work.

Full flexibility given.

Difficult to use, big risk of mis-use.

Will people accept this before data is fully exhausted?

Allow for reinterpretation behind an API.

Hide experimental details.

Flexibility can be defined.

A lot of work.

Relies on some level of consistency between analyses.

By. P. Owen

+ cope with this data?

Perhaps we should build a platform between experiment and theory, *e.g.* create a simple formalism (API) of the [data analysis \leftrightarrow data preservation \leftrightarrow modelling]

Summary

- Angular analyses are still the "cleanest" interplay between experiment and theory
- Flavourful road to amplitude analyses: [from empirical to theory-inspired models]
- Challenging analyses from both experimental and theory side → ultimate precision

[well advanced exploratory work on new strategies towards the understanding of the underline physics]

The nitty details ...

Exotic states: what is the best strategy?

[higher level of complexity for the empirical model and enters in the constraints to the charmonium mode]

S-wave: from form-factors to non-local contribution?

$$\mathcal{A}_{S0}^{L,R} = -N_0 \frac{\sqrt{\lambda_{K_0^*}}}{M_B \sqrt{q^2}} \left\{ \left[(C_9 - C_9') \mp (C_{10} - C_{10}') \right] f_+(q^2) + \frac{2m_b M_B}{q^2} \left[(C_7 - C_7') f_T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{S0}(q^2) \right] \right\}$$
$$\mathcal{A}_{St} = -2N_0 \frac{M_B^2 - M_{K_0^*}^2}{M_B \sqrt{q^2}} (C_{10} - C_{10}') f_0(q^2)$$

• Form-factors: limiting factor for C₁₀

LHCb upgrades

- Upgrade of the LHCb detector during LS2
 - All trigger decision software
 - ▶ Expect to collect 50 fb⁻¹
- LHCb phase-II
 - Further major upgrade in LS4 to profit from the HL-LHC program
 - ▶ Increase dataset up to 300 fb⁻¹

Opportunities in flavour physics, and beyond, in the HL-LHC era

<page-header><page-header><page-header><image><section-header><section-header>

Sensitivities for the LHCb Upgrade

Sensitivity to LFU breaking for the Upgrade/C' WCs

[A. Mauri et al, PRD 99 (2019) 013007]

Interesting opportunities to disentangle different NP hypotheses even with a single measurement

S-wave contribution

[arXiv:1805.06378]

Since we fully fit the q² dependence, this has also to be extended to the S-wave

$$\mathcal{A}_{S0}^{L,R} = -N_0 \frac{\sqrt{\lambda_{K_0^*}}}{M_B \sqrt{q^2}} \left\{ \left[(C_9 - C_9') \mp (C_{10} - C_{10}') \right] f_+(q^2) + \frac{2m_b M_B}{q^2} \left[(C_7 - C_7') f_T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{S0}(q^2) \right] \right\}$$
$$\mathcal{A}_{St} = -2N_0 \frac{M_B^2 - M_{K_0^*}^2}{M_B \sqrt{q^2}} (C_{10} - C_{10}') f_0(q^2)$$

Form factors are gaussian constrained from [Nucl. Phys. B868 (2013) 368] and hadronic and H parameters are free in the fit

[A. Mauri PhD Thesis]

Considering all experimental effects the sensitivity for the Wilson coefficients are not significantly affected

$\mathcal{C}_9^{\mathrm{NP}}$ mean	$\mathcal{C}_9^{\mathrm{NP}}$ sigma	$\mathcal{C}_{10}^{\text{NP}}$ mean	$\mathcal{C}_{10}^{\mathrm{NP}}$ sigma	correlation $C_9^{\rm NP}$ - $C_{10}^{\rm NP}$		
Signal only (P-wave)						
-0.96 ± 0.01	0.22 ± 0.01	0.05 ± 0.01	0.29 ± 0.01	-0.52 ± 0.03		
P + S-waves						
-0.94 ± 0.01	0.23 ± 0.01	0.07 ± 0.02	0.31 ± 0.01	-0.54 ± 0.04		
P-wave + Acc. + Bkg.						
-0.96 ± 0.01	0.23 ± 0.01	0.09 ± 0.02	0.33 ± 0.01	-0.45 ± 0.05		
Full fit						
-0.93 ± 0.01	0.24 ± 0.01	0.08 ± 0.01	0.34 ± 0.01	-0.44 ± 0.03		

[isobar] controlling hadronic paramaters

[Preliminary, U. Egede, M. Hecker, P. Owen, G. Pomery, K. Petridis]

In the presence of New Physics, the model of non-local contribution cannot describe data with expected Run-II statistics

