Total cross section in top production Measurements by ATLAS and CMS

Dr. Olga Bessidskaia Bylund

Bergische Universität Wuppertal

14th of September 2020

Analyses covered

- $t\bar{t}$ dilepton measurements (13 TeV) by <u>ATLAS</u> and by <u>CMS</u>
- $t\bar{t}$ lepton+jets measurement (13 TeV) by ATLAS
- $t\bar{t}$ at 13 TeV with hadronically decaying $\underline{\tau s}$ by CMS
- <u>t-channel</u> measurement 13 TeV by CMS
- <u>tW</u> measurement at 8 TeV by ATLAS
- <u>Combination</u> of single top measurements ATLAS+CMS (7 and 8 TeV)
- <u>tW</u> measurement at 13 TeV CMS

Some differences between ATLAS and CMS

- A higher magnetic field is applied over the inner tracking detector in CMS (4T) than in ATLAS (2T).
- Scintillators with Liquid Argon as active material are used by ATLAS for EM calorimetry, while PbWO₄ crystals are used by CMS. Higher energy resolution in EM calorimeter by CMS.
- 10 λ hadronic calorimeter in ATLAS with higher energy resolution than in CMS, which covers 7 λ .
- In general higher resolution for muons in CMS than in ATLAS.

Presentation by K. Jakobs

Dr. Olga Bessidskaia Bylund (BUW)

Total cross section in top production

Eur.Phys.J.C 80 (2020) 6, 528

- **Inclusive**, fiducial and differential measurement and top pole mass extraction.
- Dilepton channel, targets $t\bar{t} \rightarrow W^+ bW^- \bar{b} \rightarrow e^{\pm} \mu^{\mp} \nu \bar{\nu} b \bar{b}$.
 - An $e^{\pm}\mu^{\mp}$ pair+jets are required of which 1 or 2 are *b*-tagged.
 - *b*-tagging with the MV2c10 algorithm (70% working point).
- Data collected in 2015-2016 is used.
- Most precise measurement of $t\bar{t}$ at 13 TeV to date.
- By taking the ratio to the measurements at 7 and at 8 TeV their precision is improved.
- Ratios to Z production and double ratios are computed.

See talk by <u>Matteo Defranchis</u> for top pole mass extraction and use of ratios to constrain PDFs.

Events split into 2 regions by b-jet multiplicity (1 or 2 b-jets):

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1-C_b\epsilon_b) + N_1^{bkg}$$
$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2C_b\epsilon_b^2 + N_2^{bkg}$$

 $N_{1,2}$ number of observed $e^{\pm}\mu^{\mp}$ events with 1, 2 b-tagged jet(s) L integrated luminosity

 $\epsilon_{e\mu}$ efficiency to pass the $e^{\pm}\mu^{\mp}$ selection \sim 0.9 from MC

• 10% lower for 2016 (pileup, lepton triggers).

 C_b tagging correlation coefficient, $\epsilon_{bb}/\epsilon_b^2$.

• Determined from MC as $C_b = \frac{N_{e\mu}^{t\bar{t}}N_2^{t\bar{t}}}{(N_1^{t\bar{t}}+2N_2^{t\bar{t}})^2}$

- $N_{1,2}^{bkg}$ background prediction, evaluated with a combination of simulation and data control samples
 - ϵ_b *b*-tagging efficiency including acceptance, determined along with $\sigma_{t\bar{t}}$ by solving the above equations.

Lepton isolation efficiencies

- The fraction of events where one of the leptons does not pass the isolation requirement is measured in *e*µ+*b*-jet samples.
- Samples with leptons that fail the isolation requirements are contaminated by QCD multijet events.
 - The multijet contribution is estimated in data with an inverted cut on the transverse impact parameter significance $|d_0|/\sigma_{d_0}$ for one lepton.
 - Corrections for the multijet yield are applied to $t\bar{t}$ and tW.
- Derived corrections: up to 1% on $\epsilon_e^{isol.}$, 0.4% on $\epsilon_{e\mu}$.
- The choice of cut on $|d_0|/\sigma_{d_0}$ drives the uncertainty on ϵ^{isol} .

- The BLUE method is used to combine the 2015 and 2016 results, weights of 0.49, 0.51 give the smallest uncertainty.
 - The total uncertainty is reduced by 9% compared to treating all data as one dataset.

Main systematics

- The main uncertainty on the $\sigma_{t\bar{t}}$ comes from the integrated luminosity (1.9 % impact on $\sigma_{t\bar{t}}$).
- The analysis systematics have an impact of 1.39 %, with the main contributions coming from the normalisation of single top (5.3 % for tW) and modelling uncertainties for $t\bar{t}$.
 - Since the lepton isolation efficiencies have been measured *in situ*, the predictions for lepton isolation from different generators do not enter the modelling uncertainties, thus reducing their impact.

Results

- $\sigma_{t\bar{t}}^{\text{fid}} = 14.07 \pm 0.06 (\text{stat.}) \pm 0.18 (\text{syst.}) \pm 0.27 (\text{lumi.}) \pm 0.03 (\text{beam}) \text{pb.}$
- $\sigma_{t\bar{t}}$ =826.4±3.6(stat.)±11.5(syst.)±15.7(lumi.)±1.9(beam)pb.
- $\sigma_{t\bar{t}}^{theo.}$ =832±35(pdf+ α_s)⁺²⁰₋₂₉(scale)pb,(NNLO+NNLL, Top++).
- $\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} = 2.4\%$, most precise inclusive measurement of $t\bar{t}$.

Results

- $\sigma_{t\bar{t}}^{\text{fid}} = 14.07 \pm 0.06 (\text{stat.}) \pm 0.18 (\text{syst.}) \pm 0.27 (\text{lumi.}) \pm 0.03 (\text{beam}) \text{pb.}$
- $\sigma_{t\bar{t}}$ =826.4±3.6(stat.)±11.5(syst.)±15.7(lumi.)±1.9(beam)pb.
- $\sigma_{t\bar{t}}^{theo.}$ =832±35(pdf+ α_s)⁺²⁰₋₂₉(scale)pb,(NNLO+NNLL, Top++).
- $\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} = 2.4\%$, most precise inclusive measurement of $t\bar{t}$.

Ratios

- PDF uncertainties reduce in $\sigma_{13 \text{ TeV}}^{t\bar{t}}/\sigma_{7 (8) \text{ TeV}}^{tt}$.
- Improvement for 7 (8) TeV: $4.9 \rightarrow 3.9\%$ ($4.7 \rightarrow 3.6\%$).

Gluon PDFs at high Bjoerken-x are constrained.

Ratios to Z production

The luminosity uncertainty almost cancels in ratios to $Z \rightarrow \ell \ell$ production in the same dataset:

$$R^{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu})}$$

Double ratios

Cancellations for beam energies and production processes occur in:

$$R_{i/j}^{t\bar{t}/Z} = \frac{R^{t\bar{t}/Z}(i)}{R^{t\bar{t}/Z}(j)}$$

 Precision: 3.0% (2.5%) for *R*_{13/7} (*R*_{13/8}). Main systematics: signal modelling.

Dr. Olga Bessidskaia Bylund (BUW)

Eur.Phys.J.C 79 (2019) 5, 368

• Measurement in the opposite sign dilepton channel.

Selection and regions

- Split by lepton channels (ee, $e\mu$, $\mu\mu$).
 - The same-flavour channels help constrain the lepton identification efficiencies.
- Removing the Z-mass peak in the same-flavor channel.
- Divided into regions by *b*-jet multiplicity (0,1,2) and additional jets (0,1,2).
 - The *b*-tagging efficiency is 44%.
 - The 0 *b*-jet category is only used for $e\mu$ events.
 - There are 28 regions in total $(12 + 8 \cdot 2)$.

• A template fit is made.

Fitting variable

- Leading additional jet p_T (if present).
- Otherwise: event yield.
- The input distributions in the *eµ* channel are shown here.

- A multitude of regions with different compositions is used to constrain systematics.
 - A priori, the uncertainty of the electron identification efficiency is higher than for muons. Fitting the different lepton channels simultaneously constrains $\Delta \epsilon_e$ to $\Delta \epsilon_{\mu}$.
 - This in turn reduces the total measurement uncertainty.

Results

- $\sigma_{t\bar{t}} = 803 \pm 2$ (stat.) ± 25 (syst.) ± 20 (lumi) pb, in agreement with the SM prediction.
 - The main uncertainties relate to the integrated luminosity (2.5%) and lepton identification and isolation (2.0%).

See talk by <u>Matteo Defranchis</u> for the extraction of the top quark pole mass and α_s .

Valentina Vecchio discusses the uncertainties further.

$t\bar{t}$ lepton+jets, ATLAS (139 fb⁻¹, 13 TeV)

2006.13076 [hep-ex], submitted to PLB

• The full Run 2 dataset at $\sqrt{s} = 13$ TeV is used.

Selection

- Exactly one lepton (e or μ) is required and at least 4 jets.
- Requirements on E_T^{miss} and m_T^W suppress backgrounds.
- Split by jet, b-jet multiplicity (with the 60% working point).
 - Different sentitivities to backgrounds & modelling in SR1, SR2.
 - Sensitivity to extra radiation in SR3.

		U
\geq 4	= 1	W+jets
= 4	= 2	Single-top
≥ 5	= 2	Single-top
	≥ 4 = 4 ≥ 5	

 Scale factors for the reconstruction, identification and trigger performance for leptons are determined in Z → ℓ⁺ℓ⁻ events.

$t\bar{t}$ lepton+jets, ATLAS (139 fb⁻¹, 13 TeV)

Analysis strategy

- SR1: aplanarity $A = \frac{2}{3}\lambda_3$, λ_3 : smallest eigenvalue of $\frac{\sum_i p_i^{\alpha} p_j^{\beta}}{\sum_i |p_i|^2}$.
- SR2: m_{li}^{\min} , minimum invariant mass over all lepton-jet pairs.
- SR3: ΔR_{bii}^{avg} , average distance between the three jets.
 - Constructs a system similar to a hadronially decaying top.
 - The jets are selected to give the highest $p_{\rm T}$ for the system.

Dr. Olga Bessidskaia Bylund (BUW)

$t\bar{t}$ lepton+jets, ATLAS (139 fb⁻¹, 13 TeV)

- Shower: Powheg+Pythia8 vs Powheg+Herwig7.
- Luminosity uncertainty (1.7%): determined with LUCID-2, correction factors from data+associated uncertainties are applied.
- Final state radiation: variation by factors 2.0, 0.5 of μ_{FSR}.
- 85 eigenvectors are used for the *b*-tagging uncertainties.

Results

- $\sigma_{\it fid} = 110.7 \pm 0.05$ (stat.) $^{+4.5}_{-4.3}$ (syst.) ± 1.9 (lumi.) pb, 4.1%.
- $\sigma_{inc} = 830 \pm 0.4$ (stat.) ± 36 (syst.) ± 14 (lumi.) pb, 4.6%.
- Most precise inclusive $t\bar{t}$ measurement in this channel.
- The result is consistent with the theoretical prediction.

$t\bar{t}$ with a hadronic au, CMS (35.9 fb⁻¹, 13 TeV)

JHEP 02 (2020) 191

- $t\bar{t}$ with a hadronically decaying τ : $t\bar{t} \rightarrow (l\nu)(\tau_h \nu_\tau)bb$.
 - This channel covers ${\sim}5\%$ of $t\bar{t}$ final states.
 - A test of lepton universality.
 - Br($\tau \rightarrow \text{hadrons}$) = 65%.
- Selection: one electron or muon, one hadronic τ candidate of opposite charge and two jets of which at least one is b-tagged.

au reconstruction with the hadron-plus-strips (HPS) algorithm

- In each jet, a charged hadron is combined with other nearby charged hadrons or photons to identify the decay modes.
- Clustering electrons and photons in strips along the bending direction enhances π^0 identification by taking into account early showering of photons.

$t\bar{t}$ with a hadronic au, CMS (35.9 fb⁻¹, 13 TeV)

- Main background: $t\bar{t}$ (lepton+jets) with a misidentified τ .
- \bullet A BDT is used to distinguish the τ candidates from QCD.
- Identification efficiency uncertainty of τ with $p_{\rm T}$ > 20 GeV: 5%. This is the dominating uncertainty in the measurement.
 - Determined with tag-probe technique using $Z \rightarrow \tau_{\ell} \tau_{h}$ events.
 - Includes a charge mismeasuring probability of 1%.

$t\bar{t}$ with a hadronic au, CMS (35.9 fb⁻¹, 13 TeV)

- Fitting $M_T(\ell, E_T^{\text{miss}})$ in a profile likelihood fit.
- For each combination of 1 b-tagged jet and 2 light jets, the distance parameter $D_{jjb} = \sqrt{(m_W - m_{ii})^2 + (m_t - m_{iib})^2}$

 $\sqrt{(m_W - m_{jj})^2 + (m_t - m_{jjb})}$ is calculated. 2 categories:

- Signal-like if $D_{iib}^{\min} > 60 \text{GeV}$.
- Background-like otherwise.

Results

• $\sigma_{t\bar{t}} = 781 \pm 7$ (stat.) ± 62 (syst.) ± 20 (lumi.) pb.

• $\Gamma(t \rightarrow \tau \nu_{\tau} b) / \Gamma(t \rightarrow \text{all}) = 0.1050 \pm 0.0009 (\text{stat.}) \pm 0.0071 (\text{syst}).$

- Consistent with the SM prediction (0.1083 ± 0.0002 for width).
- The first measurement of $t\bar{t}$ production with a τ in the final state at 13 TeV has been performed.

- Single top *t*-channel production is measured for top, anti-top and their ratio $R_t = \sigma_t / \sigma_{\bar{t}}$.
- Due to the valence quark content of the protons, more top than anti-top events are produced.

Signature and selection

- The e/ μ +jets final states are analyzed with additional requirements related to E_T^{miss} .
- Categories split by lepton flavour and charge, jet and *b*-jet multiplicity:
 - 2 jets 1 b-tag: signal-enriched
 - 3 jets, 1 b-tag, 3 jets 2 b-tags: control regions dominated by $t\bar{t}$
- BDT algorithms enhance the separation of signal from large backgrounds.

- A simultaneous fit to all categories, split by the lepton charge, is performed.
- R_t is extracted directly from the fit, together with σ_{t-ch} .

To profile or not to profile ...

Profiling

Allows for constraints.

- Experimental uncertainties
- Background rates
- Background modelling (shapes)

Results

$$\begin{array}{l} \sigma_t = 130 \pm 1 (\text{stat}) \pm 19 (\text{syst}) \text{pb} \\ \sigma_{\overline{t}} = 77 \pm 1 (\text{stat}) \pm 12 (\text{syst}) \text{pb} \\ R_t = 1.68 \pm 0.02 (\text{stat}) \pm 0.05 (\text{syst}) \end{array}$$

Not profiling

Avoids constraints.

- Signal modelling (shapes): scales, NLO matching, parton shower, pdfs.
 - Avoids assuming the same constraints on signal modelling when extrapolating to full phase space.
- Integrated luminosity (rate): known to 2.5%.

Theory, NLO with HATHOR $\sigma_t^{theo} = 136.0^{+4.1}_{-2.9} (\text{scale}) \pm 3.5 (\text{pdf} + \alpha_S) \text{pb}$ $\sigma_{\overline{t}}^{theo} = 81.0^{+2.5}_{-1.7} (\text{scale}) \pm 3.2 (\text{pdf} + \alpha_S) \text{pb}$ $R_t^{theo.} = 1.68$

tW lepton+jets, ATLAS (20.2 fb^{-1} , 8 TeV)

2007.01554, submitted to EPJC

- One isolated lepton and at least 3 jets are required, targeting one hadronically and one leptonically decaying *W*.
- A neural network is trained to separate the signal from the background, which is dominated by tt

 .

tW lepton+jets, ATLAS (20.2 fb^{-1} , 8 TeV)

- For 65 < m(W_H) < 92.5 [GeV], a 2D discriminant is constructed from m(W_H) and the NN response.
- Outside of this range, just $m(W_H)$ is used.

Results

- $\sigma_{tW} = 26 \pm 7$ pb (of which data statistics \pm 4 pb).
- $\sigma^{theo.}_{tW} =$ 22.4 \pm 0.6(scale) \pm 1.4(PDF) pb (NLO+NNLL).
- Main systematics: jet reconstruction, b-tagging and the modelling of tt and tW and their interference.

tW dilepton, CMS (35.9 fb^{-1} , 13 TeV)

JHEP 10 (2018) 117

- A dilepton $e\mu$ selection with 1 or 2 jets is applied. Split into regions by jet and b-jet multiplicity (1j1b, 2j1b, 2j2b CR).
- Separate BDTs are trained for 1j1b and 2j1b.
- A likelihood fit to the signal strength is performed.
- Main systematics: pileup, jet energy scale, lepton efficiencies.

Results

 $\sigma_{tW} = 63.1 \pm 1.8 \text{ (stat)} \pm 6.4 \text{ (syst)} \pm 2.1 \text{ (lumi) pb, consistent}$ with $\sigma_{tW}^{theo} = 71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF)}.$ The most precise measurement at 13 TeV to date.

Dr. Olga Bessidskaia Bylund (BUW) Total cross section in top production

- Some of the latest results for the total cross section in $t\bar{t}$ and single top production by ATLAS and CMS have been shown.
- Several results for obtained from a partial Run 2 dataset collected at $\sqrt{s} = 13$ TeV, have been published.
- The first results using the full Run 2 dataset are becoming public.
- We are pushing the limit in precision with novel treatments of experimental uncertainties.
- Combinations of results from ATLAS and CMS are performed.

Object	Identification	Selection
Electrons	Tight likelihood	$E_{\rm T} > 20 {\rm GeV}, \eta < 1.37 \text{ or } 1.52 < \eta < 2.47,$ isolation
Muons	Medium	$p_{\rm T} > 20 {\rm GeV}, \eta < 2.5, {\rm isolation}$
Jets	Anti- $k_l R = 0.4$	$p_{\rm T}$ > 25 GeV, $ \eta $ < 2.5, b-tagging with MV2c10 at 70% efficiency
Event		1 electron+1 muon with opposite sign, 1 or 2 b-tagged jets

Table 1 Summary of the main object and event selection requirements

- When solving Eqs. 1, 2 the number of b-tagged jets in *tW* and diboson backgrounds is predicted by simulation.
- The correlation coefficient C_b also has a weak dependence on the efficiencies for tagging heavy- and light-flavoured jets.
- The modelling of the b-tagging performance in simulation was then corrected using scale factors determined from:
 - Dilepton $t\overline{t}$ events for b-jets
 - Single-lepton $t\bar{t}$ events for charm jets
 - Dijet events for jets from light-quarks and gluons.
- The corresponding uncertainties were propagated to the background and correlation coefficient estimates.

$t\bar{t}$ dilepton, ATLAS

Signal modelling

Evaluated for $\epsilon_{e\mu}$, $G_{e\mu}$ and C_b and propagated to the cross section.

- NLO matching: Powheg+Pythia8 vs aMC@NLO+Pythia8.
- Hadronisation: Powheg+Pythia8 vs Powheg+Herwig7.
- ISR/FSR: varying μ_R , μ_F by factors of 2, 0.5.

Background modelling

- tW normalisation uncertainty: 5.3%. tW modelling: Diagram Removal vs Diagram Subtraction to remove overlaps with $t\bar{t}$.
- Scale factors for Z+jets are derived from data. The multijet background is measured in data.

Luminosity and beam energy

- Uncertainty on integrated luminosity: 2.0% for 2015, 2.1% for 2016, applied separately. Determined with LUCID-2.
- Beam energy: 0.1% precision, impact on $\sigma_{t\bar{t}}$: 0.23%.

$t\bar{t}$ dilepton, ATLAS

	Uncertainty source	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta G_{e\mu}/G_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	$\Delta \sigma_{i\bar{i}}^{\rm fid} / \sigma_{i\bar{i}}^{\rm fid}$
		(%)	(%)	(%)	(%)	(%)
	Data statistics				0.44	0.44
tī mod.	tī generator	0.38	0.05	0.05	0.43	0.10
	tī hadronisation	0.24	0.42	0.25	0.49	0.67
	Initial/final-state radiation	0.30	0.26	0.16	0.45	0.41
	tī heavy-flavour production	0.01	0.01	0.26	0.26	0.26
	Parton distribution functions	0.44	0.05	-	0.45	0.07
	Simulation statistics	0.22	0.15	0.17	0.22	0.18
Lept.	Electron energy scale	0.06	0.06	-	0.06	0.06
	Electron energy resolution	0.01	0.01	-	0.01	0.01
	Electron identification	0.34	0.34	-	0.37	0.37
	Electron charge mis-id	0.09	0.09	-	0.10	0.10
	Electron isolation	0.22	0.22	-	0.24	0.24
	Muon momentum scale	0.03	0.03	-	0.03	0.03
	Muon momentum resolution	0.01	0.01	-	0.01	0.01
	Muon identification	0.28	0.28	-	0.30	0.30
	Muon isolation	0.16	0.16	-	0.18	0.18
	Lepton trigger	0.13	0.13	-	0.14	0.14
Jet/b	Jet energy scale	0.02	0.02	0.06	0.03	0.03
	Jet energy resolution	0.01	0.01	0.04	0.01	0.01
	Pileup jet veto	-	-	-	0.02	0.02
	b-tagging efficiency	-	-	0.04	0.20	0.20
	b-tag mistagging	-	-	0.06	0.06	0.06
Bkg.	Single-top cross-section	-	-	-	0.52	0.52
	Single-top/tī interference	-	-	-	0.15	0.15
	Single-top modelling	-	-	-	0.34	0.34
	Z+jets extrapolation	-	-	-	0.09	0.09
	Diboson cross-sections	-	-	-	0.02	0.02
	Diboson modelling	-	-	-	0.03	0.03
	Misidentified leptons	-	-	-	0.43	0.43
	Analysis systematics	0.91	0.75	0.44	1.39	1.31
$L/E_{\rm b}$	Integrated luminosity	-	-	-	1.90	1.90
	Beam energy	-	-	-	0.23	0.23
	Total uncertainty	0.91	0.75	0.44	2.40	2.36

- Uncertainties for efficiencies, correlations and the total and fiducial cross section are evaluated.
- Main uncertainty: integrated luminosity.
- Main analysis systematics: normalisation of the single top cross section, tt modelling uncertainties.

tt dilepton, ATLAS, background details

- The main background *tW* is evaluated with simulation, as well as diboson production.
- Z+b-jets has large theoretical uncertainties: simulated with SHERPA, incusive xs normalised to FEWZ prediction and further scaled by 1.10 ± 0.12 (1 b-tag) and 1.20 ± 0.12 (2 b-tags), derived in data in an OS same flavour selection. In addition 5% and 23% uncertainties were assigned from a re-evaluation for the SFs using MG5_AMC@NLO+PYTHIA8.
- The contribution of events with one misidentified lepton was estimated in a same sign $e\mu$ selection for *j* b-tags (1,2):

$$N_{j}^{\text{mis-id}} = R_{j}(N_{j}^{\text{data,SS}} - N_{j}^{\text{sim,prompt,SS}})$$
(1)
$$R_{j} = \frac{N_{j}^{\text{sim,mis-id,OS}}}{N_{j}^{\text{sim,mis-id,SS}}}$$
(2)

- The predicted cross-section also depends strongly on m_t, decreasing by 2.7% for a 1 GeV increase in the top mass.
- A 0.1 % variation inscorresponds to a 0.23% variation $\sigma_{t\bar{t}}$.

$t\bar{t}$ production, lepton+jets inclusive (ATLAS)

Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$rac{\Delta\sigma_{ m inc}}{\sigma_{ m inc}}$ [%]		
Signal modelling				
tī shower/hadronisation	±2.8	±2.9		
$t\bar{t}$ scale variations	±2.2	±2.7		
h _{damp}	±1.5	± 1.1		
Background modelling				
MC background modelling	±1.8	±2.0		
Multijet background	±0.8	±0.6		
Detector modelling				
Jet reconstruction	±2.5	±2.6		
Luminosity	±1.7	±1.7		
Flavour tagging	±1.2	±1.3		
$E_{\rm T}^{\rm miss}$ + pile-up	±0.3	±0.3		
Muon reconstruction	±0.6	±0.5		
Electron reconstruction	±0.7	±0.6		
Simulation stat. uncertainty	±0.6	±0.7		
Total systematic uncertainty	±4.3	±4.6		
Data statistical uncertainty	±0.05	±0.05		
Total uncertainty	±4.3	±4.6		

- Selection: one electron (muon) with $p_{\rm T} > 30$ (26) GeV, one hadronic τ candidate of opposite charge, $p_{\rm T} > 30$ GeV and two jets of which at least one is b-tagged (66% efficiency).
- A BDT is used to distinguish the τ candidates from QCD. Input: multiplicity and the $p_{\rm T}$ of e, γ candidates near the τ , kinematics of hadrons and strips, info about τ lifetime.
- Fitting $M_T(\ell, E_T^{\text{miss}}) = \sqrt{2p_T^\ell E_T^{\text{miss}} \cdot (1 \cos \Delta \phi)}$ in a profile likelihood fit.

Selection: an electron $p_{\mathrm{T}} >$ 24 GeV or muon $p_{\mathrm{T}} >$ 32 GeV + jets.

BDT input variables

- 1. Light-quark jet $|\eta|$
- 2. Invariant mass of top
- 3. Dijet mass of the of (b,j) from the top decay.
- 4. $\Delta R(\ell, b)$
- 5. $\cos \theta^*$
- 6. $p_{\rm T}$ sum for jets from top
- 7. m_T^W
- 8. E_T^{miss}
- 9. $\Delta R(j, b)$ (jets from top)
- **10**. $|\eta(\ell)|$
- 11. $|\eta(W)|$
- 12. Invariant mass of light jet

t-channel

tW-channel

s-channel

Combining with BLUE

The BLUE method is applied iteratively to combine the single top results from ATLAS and CMS.

- $\bullet\,$ BLUE minimises the global χ^2 by adjusting the weight of each input measurement.
- Convergence criterion: the change in χ^2 is less than 0.01% from the previous iteration.
- Systematic uncertainties are scaled with the cross section in each iteration (relative uncertainties).
- Data and MC statistics are not scaled.

JHEP 05 (2019) 088

Decorrelated uncertainties

- Data statistical, simulation statistical.
- Background normalisation.
- Jet energy scale, jet energy resolution
- Lepton modelling
- E_T^{miss} calculation
- *b*-tagging
- Pileup modelling

Partially correlated uncertainties

• Integrated luminosity (0.3)

Fully correlated uncertainties

- Signal modelling and dependence on top quark mass.
- Some uncertainties in theoretical cross-section predictions: μ_R and μ_F for tW.

The coupling at the *tWb* vertex: $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas.}}{\sigma_{theo.}(V_{tb}=1)}} = 1.02 \pm 0.04 (\text{meas.}) \pm 0.02 (\text{theo.})$ Dr. Olea Bessidskia Bylund (BUW)
Total cross section in top production

tW 13 TeV (CMS)

tW 13 TeV CMS

Source	Uncertainty (%)
Experimental	
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
$t\bar{t} \mu_R$ and μ_F scales	2.5
tW μ_R and μ_F scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
tť	2.8
VV	0.4
Drell–Yan	1.1
Non-W/Z leptons	1.6
tīV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic (excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1