NNLO QCD corrections to differential top-quark pair production with the MS mass

> Stefano Catani INFN Firenze

based on JHEP (2020) 027 [2005.00557] (see also JHEP (2019) 100 [1906.06535])

in collaboration with

Simone Devoto, Massimiliano Grazzini, Stefan Kallweit, Javier Mazzitelli

Top 2020, Durham, September 14, 2020

Outline

- Relation between pole mass and MS mass some general features
- Top-quark production at the LHC unequal role of pole mass and MS mass
- Cross sections for *tī* on-shell production from pole mass and MS mass
- QCD results with MS mass total and single-differential cross sections up to NNLO
- Effects due to the MS running mass a first study: invariant-mass distribution of *tī* pair
- Summary

POLE vs. MS MASS

top-quark mass:fundamental parameter of SM to be properly defined by
renormalization of related UV divergences

• pole mass M_t : pole of renormalized propagator ("customary" mass for physical particle)

• $\overline{\text{MS}}$ mass $m_t(\mu_m)$: "subtract" UV divergences in dimensional regularization (more abstract definition)

different renormalization schemes are perturbatively related:

$$M_t = m_t(\mu_m) \, d(m_t(\mu_m), \mu_m) = m_t(\mu_m) \left(1 + \sum_{k=1}^{\infty} \left(\frac{\alpha_{\rm S}(\mu_m)}{\pi} \right)^k \, d^{(k)}(\mu_m) \right)$$

• we specifically use mass relation at NNLO ($k \le 3$)

coefficients $d^{(k)}$ known for $k \le 4$

 $\overline{\text{MS}}$ mass depends on arbitrary renormalization scale μ_m (similarly to QCD coupling $\alpha_S(\mu_R)$) and scale dependence is perturbatively computable [Renormalization Group (RG) evolution]

$$\frac{d\ln m_t(\mu_m)}{d\ln \mu_m^2} = -\sum_{k=0}^{\infty} \gamma_k \left(\frac{\alpha_{\rm S}(\mu_m)}{\pi}\right)^{k+1}$$

coefficients γ_k known for $k \leq 4$

• we specifically use RG evolution at NNLO ($k \le 2$)

Note: scale dependence of $\overline{\text{MS}}$ mass much slower than α_{S}

$$\frac{d \ln m_t(\mu)}{d \ln \mu} \sim \frac{1}{2} \frac{d \ln \alpha_{\rm S}(\mu)}{d \ln \mu} \qquad \text{at LO}$$

MS mass $m_t(\mu_m)$ can be specified by: its value at a reference scale + RG evolution customary reference scale: \bar{m}_t (no special physical meaning; somehow analogous to reference scale M_Z for $\alpha_S(\mu_R)$)

a scale of the order of the mass itself ("intrinsic" definition)

$$m_t(\bar{m}_t) = \bar{m}_t$$

typical values at NNLO
(*O*(GeV) variations w.r.t. LO, NLO)

 $M_t = 173 \text{ GeV} \iff \bar{m}_t = 164 \text{ GeV}$ (~10 GeV difference)

[Note: at scale $\mu_m = \bar{m}_t/2 \rightarrow m_t(\mu_m) = M_t + \mathcal{O}(1 \text{ GeV})$, simply because to $d^{(1)} \sim 0$]

Two main consequences of scale dependence of \overline{MS} mass

• perturbative QCD predictions unavoidably depend on μ_m (in addition to renormalization scale μ_R from $\alpha_S(\mu_R)$ and factorization scale μ_F from PDFs)

• μ_m can possibly be set to a scale very different from $M_t \sim \bar{m}_t$ to embody ("resum") higher-order corrections \longrightarrow running mass effects

TOP QUARK at the LHC

indirect studies/sensitivity :

top quark enters as virtual (highly off-shell) particle
[e.g., Higgs boson production by gluon-gluon fusion through top-quark loop]

pole and $\overline{\text{MS}}$ masses can be introduced on equal footing

TOP QUARK at the LHC

direct studies/sensitivity:

top quark (its decay products) is (are) directly observed in the final state

• based on definite physical picture

top quark is "physical", though unstable, particle with definite pole mass M_t (~ 173 GeV) and small decay width Γ_t (~ 1.4 GeV)

then

data on top-quark production extracted from quasi-resonant behavior (around pole mass) of its decay products

- no data without the concept of pole mass
- pole mass has primary role [$\overline{\text{MS}}$ mass has (somehow) an auxiliary role] * difference pole vs. $\overline{\text{MS}}$ mass can be much larger than width Γ_t

theory counterpart:

after integration over top-quark decay products and in narrow-width limit

 \rightarrow compute cross section for production of on-shell top quark with pole mass M_t

[M_t is not only a parameter of the Lagrangian but also a key kinematical parameter of the phase space (of the underlying physical picture)]

ON-SHELL CROSS SECTION for *tī* PRODUCTION: from pole to MS mass

Start from on-shell cross section $\sigma(M_t, X)$ with pole mass M_t (total σ or differential $d\sigma/dX$)

e.g. up to NNLO
$$\sigma_{\text{NNLO}}(\alpha_{\text{S}}(\mu_{R}), \mu_{R}, \mu_{F}; M_{t}; X) = \sum_{i=0}^{2} \left(\frac{\alpha_{\text{S}}(\mu_{R})}{\pi}\right)^{i+2} \sigma^{(i)}(M_{t}; \mu_{R}, \mu_{F}; X)$$

Perform all-order replacement $M_t \rightarrow m_t(\mu_m)$ and define $\overline{\text{MS}}$ scheme cross section $\overline{\sigma}$ by ALL-ORDER (formal) EXACT EQUALITY

 $\bar{\sigma}(\alpha_{\rm S}(\mu_R), \mu_R, \mu_F; \mu_m, m_t(\mu_m); X) = \sigma(\alpha_{\rm S}(\mu_R), \mu_R, \mu_F; M_t = m_t(\mu_m) d(m_t(\mu_m), \mu_m); X)$ $\boxed{\text{MS scheme}}$ Pole scheme

Note: mass and kinematic variable(s) *X* are treated as independent variables

• Express M_t in terms of { $m_t(\mu_m)$ and $\alpha_S(\mu_R)$ } and expand σ in α_S at fixed $m_t(\mu_m)$ e.g. up to NNLO

$$\bar{\sigma}_{\text{NNLO}}(\alpha_{\text{S}}(\mu_{R}), \mu_{R}, \mu_{F}; \mu_{m}, m_{t}(\mu_{m}); X) = \sum_{i=0}^{2} \left(\frac{\alpha_{\text{S}}(\mu_{R})}{\pi}\right)^{i+2} \bar{\sigma}^{(i)}(m_{t}(\mu_{m}); \mu_{m}, \mu_{R}, \mu_{F}; X)$$

• Explicit expressions* at LO, NLO and NNLO

$$+ d^{(2)}(\mu_m) \,\partial_m \sigma^{(0)}(m;\mu_F;X) + \beta_0 \,d^{(1)}(\mu_m) \ln\left(\frac{\mu_R^2}{\mu_m^2}\right) \partial_m \sigma^{(0)}(m;\mu_F;X) \right) \bigg]_{m=m_t(\mu_m)}$$

result depends on renormalization coefficients $d^{(k)}$, pertubative terms $\sigma^{(k)}$ of on-shell cross section and their mass derivatives $\partial_m^n \sigma^{(k)}$

- WARNING : mass derivatives can be very sizeable thus spoiling the perturbative convergence of $\overline{\text{MS}}$ cross section $\overline{\sigma}$ (e.g., invariant mass of $t\overline{t}$ pair close to its threshold region)

* same perturbative formulae used by Langenfeld-Moch-Uwer (2009), Dowling-Moch (2014) and applied to total cross section up to NNLO and single-differential distributions up to NLO within this formulation, pole scheme and $\overline{\text{MS}}$ scheme results are formally equivalent to all orders in α_{S} but different if expanded * at fixed orders

* $\alpha_{\rm S}$ expansion at fixed M_t (in σ) or $m_t(\mu_m)$ (in $\bar{\sigma}$)

our general expectations

at low orders, σ and σ̄ can give consistent (within scale uncertainties) results
 [differences can be larger for observables close to kinematical thresholds for *tī* on-shell production]

at higher orders, σ and σ̄ can be quantitatively very similar
 equivalent perturbative description

then

• for observables at high scales $X \gg m_{top}$ (e.g., top quark at large p_T or $t\bar{t}$ pair at high invariant mass)

investigate effects of running MS mass

 $m_t(\mu_m)$ with $\mu_m \sim X$

Note: at such scales μ_m the coefficients $d^{(k)}(\mu_m)$ are sizeable

our main motivation for using \overline{MS} mass

LHC RESULTS up to NNLO

two independent NNLO fully differential calculations of $t\bar{t}$ on-shell production with pole mass

Czakon, Fiedler, Mitov (2016) Devoto, Grazzini,Kallweit, Mazzitelli + S.C. (2019)

- we use our calculation by numerically computing mass derivatives $\partial_m^n \hat{\sigma}^{(k)}(m)$ on a bin-by-bin basis (X bins)
- 3 auxiliary scales $\mu_i = \{\mu_R, \mu_F, \mu_m\}$ and independent scale variations by a factor of two around central μ_0 :

 $\mu_i = \xi_i \mu_0, \, \xi_i = \{1/2, 1, 2\}$ with constraints $\mu_i / \mu_j \le 2$

- 15-point scale variation in MS scheme
 (customary 7-point in pole scheme with 2 auxiliary scales)
- we compare pole scheme and $\overline{\text{MS}}$ scheme by setting pole scheme: $M_t = 173.3 \text{ GeV}$ and use $\mu_0 = M_t$ $\overline{\text{MS}}$ scheme: $\overline{m}_t = 163.7 \text{ GeV}$ and use $\mu_0 = \overline{m}_t$ (varying μ_m with $0.5 < \mu_m/\mu_0 < 2 \longrightarrow 155 \text{ GeV} < m_t(\mu_m) < 173 \text{ GeV}$)

we use NNPDF31 and $\sqrt{s} = 13$ TeV

TOTAL CROSS SECTION

scheme	pole	$\overline{\mathrm{MS}}$				
variation	7-point	15-point	$\mu_m = \mu_0$	$\mu_{R/F} = \mu_0$	$\mu_{R/F} = \mu_m$	
LO (pb)	$478.9~^{+29.6\%}_{-21.4\%}$	$625.7 \ ^{+29.4\%}_{-21.9\%}$	$^{+29.4\%}_{-21.3\%}$	$^{+24.7\%}_{-21.9\%}$	$^{+1.5\%}_{-1.5\%}$	
NLO (pb)	$726.9\ ^{+11.7\%}_{-11.9\%}$	$826.4 \ ^{+7.6\%}_{-9.7\%}$	$^{+7.6\%}_{-9.6\%}$	$^{+5.6\%}_{-9.7\%}$	$^{+1.2\%}_{-1.2\%}$	
NNLO (pb)	$794.0\ ^{+3.5\%}_{-5.7\%}$	$833.8 \ ^{+0.5\%}_{-3.1\%}$	$^{+0.4\%}_{-2.9\%}$	$^{+0.3\%}_{-3.1\%}$	$^{+0.0\%}_{-0.3\%}$	
			(a)	(b)	(c)	

comparison pole scheme ($\mu_0 = M_t$) and $\overline{\text{MS}}$ scheme ($\mu_0 = \overline{m}_t$)

- order-by-order consistency of the results and very similar at NNLO
- $\overline{\text{MS}}$ typically higher at central scale and with smaller uncertainties at NLO and NNLO [μ_R (a) and μ_m (b) dependences have similar size but opposite sign (cancellations (c))]
- MS results have faster apparent convergence *

$$\frac{\text{NLO}}{\text{LO}} = 1.52 \text{ (pole)}, 1.32 \text{ (MS)}$$
$$\frac{\text{NNLO}}{\text{NLO}} = 1.09 \text{ (pole)}, 1.01 \text{ (MS)}$$

* first noticed byLangenfeld-Moch-Uwer (2009)

pole vs. MS scheme: slower/faster apparent convergence

central scales

 $\mu_0 = M_t \text{ vs. } \mu_0 = \overline{m}_t$: we do not have a physical interpretation but we do have a technical explanation (valid in any scheme with renormalized mass $m_{\text{ren.}} < M_t$)

the apparent convergence strongly depends on the choice of central value μ_0 of auxiliary scales

scheme	pole	$\overline{\mathrm{MS}}$	$\overline{\mathrm{MS}}$	pole
central scale choice	$\mu_{R/F} = M_t$	$\mu_{R/F} = \overline{m}_t$ $\mu_m = \overline{m}_t/2$	$\mu_{R/F} = \overline{m}_t$ $\mu_m = \overline{m}_t$	$\mu_{R/F} = M_t/2$
LO (pb)	478.9	488.9	625.7	619.8
NLO (pb)	726.9	746.4	826.4	811.4
NNLO (pb)	794.0	808.0	833.8	822.4

Slower: $\overline{\text{MS}}$ scheme ($\mu_{0,m} = \overline{m}_t/2$) and pole scheme ($\mu_0 = M_t$) behave similarly Faster: $\overline{\text{MS}}$ scheme ($\mu_{0,m} = \overline{m}_t$) and pole scheme ($\mu_0 = M_t/2$)* behave similarly

> * scale suggested by Czakon-Deymes-Mitov (2017)

DIFFERENTIAL CROSS SECTIONS

- overall features similar to those for total cross sections
- at NNLO (see ratio MS/pole): shape differences are quite small and within scale uncert.

the results in the two schemes behave similarly at (sufficiently) high order

similar comments apply to other differential cross sections :

 rapidity of t quark or tī pair
 invariant-mass m_{tī} distribution of tī pair at high m_{tī}

 exception :

 invariant-mass distribution of tī pair close to its threshold region

overall observations

- results in pole and \overline{MS} schemes become increasingly similar at high orders

- NNLO results: precise QCD predictions in both schemes

rapidity of t quark (antiquark)

rapidity of top-quark pair

INVARIANT-MASS DISTRIBUTION of tī PAIR

recent CMS study (2020)

- precise measurement of $m_{t\bar{t}}$ cross section: 4 bins over region ~ 380 – 1000 GeV
- use NLO calculation with FIXED $\overline{\text{MS}}$ mass \overline{m}_t (i.e. $\mu_m = \overline{m}_t$ in all bins) and fit value of \overline{m}_t to data in each bin

our conclusions :

data/NLO consistency with a single common (i.e., bin-independent within errors) value of \bar{m}_t

can we study effects due to running $\overline{\text{MS}}$ mass $m_t(\mu)$? this unavoidably requires calculation with RUNNING (bin-dependent) value of μ_m (i.e., $m_t(\mu_m)$)

$m_{t\bar{t}}$ DISTRIBUTION: EFFECTS OF RUNNING \overline{MS} MASS

we investigate QCD results in MS scheme with two different options for central scale μ_0 (i) FIXED mass : set $\mu_0 = \bar{m}_t$ (for μ_m, μ_R, μ_F) [NNLO extension of CMS NLO calculation]
(ii) RUNNING mass : set $\mu_0 \simeq m_{t\bar{t}}/2$ (for μ_m, μ_R, μ_F) (i.e. $m_t(m_{t\bar{t}}/2)$ is bin-dependent and it varies by about 10 GeV : from $m_t \sim 160$ GeV in 1-st. bin \rightarrow to $m_t \sim 150$ GeV in 4-th. bin)

set up: ABMP16 PDFs (as in CMS study of $m_{t\bar{t}}$ distribution); $\bar{m}_t = 161.6 \text{ GeV}$ (as measured at NNLO by CMS study of total cross section)
[it corresponds to $M_t = 170.8 \text{ GeV}$]

* Aside comment

high (multi TeV) $m_{t\bar{t}}$ region : two very different scales, M_t and $m_{t\bar{t}}$

→ resummation of soft/collinear effects
 [e.g., Ahrens et al. (2010), Ferroglia et al. (2012), Czakon et al. (2018)]
 could be combined with running mass effects

comparison FIXED vs. RUNNING (including 15-point scale variations)

- practically ("by definition") no theory differences at low $m_{t\bar{t}}$
- differences at high $m_{t\bar{t}}$ are "small" and mainly driven by running of $\alpha_{\rm S}$ and PDFs
- very similar/consistent (within scale uncertainties) results at NNLO

our conclusions :

- NNLO corrections lead to reduced th. uncert. and to improved agreement with data [moreover : pole scheme calculation with $M_t = 170.8$ GeV can do a similar job]
- no significant sensitivity to running mass effects

Summary

• On-shell top-quark production: reformulation of QCD calculation from pole to MS mass

• $t\bar{t}$ production at the LHC:

first NNLO results for single-differential cross sections by using MS mass
[extension to multi-differential and/or fiducial cross section is straightforward (feasible)]

QCD comparison pole vs. $\overline{\text{MS}}$ schemes (at fixed $\overline{\text{MS}}$ mass: $m_t(\mu_m)$ with $\mu_m \sim \bar{m}_t$) including perturbative uncertainties (15-point scale variations in $\overline{\text{MS}}$ scheme)

- consistent order-by-order results and increasingly similar results at high order
- at NNLO: precise QCD predictions in terms of MS mass
 relevant for ensuing studies with MS mass
- Effects due to the running of MS mass

first study of running mass effects ($m_t(\mu_m)$ with $\mu_m \sim m_{t\bar{t}}/2$) for invariant-mass distribution of $t\bar{t}$ pair in region up to $m_{t\bar{t}} \sim 1$ TeV

- no significant sensitivity to running mass effects
- further studies of running mass effects feasible and warranted

ON-SHELL CROSS SECTION for *tī* PRODUCTION: from pole to MS mass

some obvious unphysical features

definitely unphysical if $M_t - m_t(\mu_m)$ is large w.r.t. Γ_t

e.g., consider invariant-mass $m_{t\bar{t}}$ of $t\bar{t}$ pair

it has a physical threshold at minimum value $m_{t\bar{t}}^{\text{min.}} = 2M_t$

• physical threshold fulfilled order-by-order in $\alpha_{\rm S}$ within pole scheme

within $\overline{\text{MS}}$ scheme :

•
$$m_{t\bar{t}}^{\min} = 2m_t(\mu_m)$$
 at LO

• near threshold: $\partial_m^n \hat{\sigma}^{(l)}$ very large

arbitrary dependence on μ_m ; definitely unphysical if $M_t - m_t(\mu_m)$ is large w.r.t. Γ_t

very large N^kLO corrections (badly convergent $\alpha_{\rm S}$ expansion)

invariant-mass distribution of $t\bar{t}$ pair

comparison pole $(\mu_0 = M_t)$ vs. $\overline{MS} (\mu_0 = \overline{m}_t)$: similar to other distributions but exception \rightarrow region close to threshold (1st. bin: 300-360 GeV, 2nd. bin: 360-400 GeV)

low- $m_{t\bar{t}}$ region : $\overline{\text{MS}}$ results have larger uncertainty (dominated by μ_m variations) and larger radiative corrections

consequence of unphysical order-by-order "identification" $M_t \rightarrow m_t(\mu_m)$ [mis-behaviour partly alleviated at high orders and/or using wide bin size]

• sufficiently close to threshold : no point in using \overline{MS} mass

use pole scheme (possibly refined by resummation of Coulomb-type effects *)

* see talk by Li Lin Yang

