

 $13^{\rm th}$ International Workshop on Top Quark Physics $14\mathchar`-18$ September 2020

Measuring standard model parameters with top-quark cross sections

Matteo Defranchis (CERN) on behalf of the ATLAS and CMS Collaborations

top quark production and QCD parameters

top quarks mainly produced in $t\bar{t}\ensuremath{\,pairs}$

• gluon fusion \rightarrow dominant at LHC

calculations of $\sigma_{ m t\bar t}$

- available up to NNLO+NNLL ($\simeq 5\%$ precision)
- experimental precision currently superior to theoretical one

in pQCD, predictions for $\sigma_{t\bar{t}}$ depend on experimental inputs

- 1 value of $\alpha_{\rm S}$
- 2 value of $m_{\rm t}$ (pole, $\overline{\rm MS}$, ...)
- **6** gluon (quark) PDF at high-x (up to $x \simeq 0.1$)
- \rightarrow measurements of $\sigma_{t\bar{t}}$ can constrain QCD parameters

direct vs indirect measurement of $m_{ m t}$

direct measurement: reconstruct invariant mass of top quark decay products

- compare to MC templates generated with different values of *m*_t
- can reach precision of $\sim 0.5\,\text{GeV}$

direct vs indirect measurement of $m_{\rm t}$

direct measurement: reconstruct invariant mass of top quark decay products

- compare to MC templates generated with different values of *m*_t
- can reach precision of $\sim 0.5\,\text{GeV}$

indirect determination: measure observable sensitive to $m_{\rm t}$ (e.g. $\sigma_{\rm t\bar{t}}$)

- compare measured σ_{tt} to fixed-order calculations (inclusive, differential)
- *m*_t determined in well-defined scheme

direct vs indirect measurement of $m_{\rm t}$

direct measurement: reconstruct invariant mass of top quark decay products

- compare to MC templates generated with different values of *m*_t
- can reach precision of $\sim 0.5\,\text{GeV}$

indirect determination: measure observable sensitive to $m_{\rm t}$ (e.g. $\sigma_{\rm t\bar{t}}$)

- compare measured $\sigma_{t\bar{t}}$ to fixed-order calculations (inclusive, differential)
- *m*_t determined in well-defined scheme

e.g. PRL 117 (2016) 232001

$m_{ m t}^{ m MC}$ dependence of measured cross sections

visible phase space

- detector geometry
- 2 selection of final-state objects

$$\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}}
ightarrow \sigma_{\mathrm{t}\bar{\mathrm{t}}} = rac{\sigma_{\mathrm{t}\bar{\mathrm{t}}}^{\mathrm{vis}}}{A_{\mathsf{sel}} \cdot \mathsf{BR}}$$

- acceptance A_{sel} depends on assumed $m_{\mathrm{t}}^{\mathrm{MC}}$
- potential problem when extracting $m_{
 m t}$

$m_{ m t}^{ m MC}$ dependence of measured cross sections

visible phase space

- 1 detector geometry
- 2 selection of final-state objects

$$\sigma_{ ext{t}ar{ ext{t}}}^{ ext{vis}} o \ \sigma_{ ext{t}ar{ ext{t}}} = rac{\sigma_{ ext{t}ar{ ext{t}}}^{ ext{vis}}}{A_{ ext{sel}} \cdot ext{BR}}$$

- acceptance $A_{
 m sel}$ depends on assumed $m_{
 m t}^{
 m MC}$
- potential problem when extracting $m_{
 m t}$

kinematic top quark reconstruction

- estimate neutrino momenta using kinematic constraints ($m_{
 m W}$ and $m_{
 m t}^{
 m MC}$)
- *m*^{MC}_t: large effect near threshold
- \rightarrow mitigation strategies discussed in this talk

Recent QCD results from $t\bar{t}$ cross sections in ATLAS and CMS

EPJC 80 (2020) 528

 $e^{\mp}\mu^{\pm}$ channel, 36.1 fb⁻¹ (2015+2016)

- event count in bins of b-jet multiplicity
- significant improvements in lepton ID and luminosity determination
- \rightarrow more details in Olga Bylund's talk

$$\begin{split} \sigma_{t\bar{t}}^{(e\mu)} = & 826.4 \pm 3.6 \text{ (stat)} \pm 19.6 \text{ (syst) pb} \\ \sigma_{t\bar{t}}^{th} = & 832 \begin{array}{c} ^{+20}_{-29} \text{ (scale)} \pm 35 \text{ (PDF} + \alpha_{\mathrm{S}} \text{) pb} \\ \text{(Top++, NNLO+NNLL)} \end{split}$$

- total uncertainty of 2.4%, cfr: $\Omega \simeq 5\%$ of theoretical prediction **2** 4% of CMS result in $\ell^+\ell^-$ channels
- \rightarrow most precise 13 TeV measurement

m_{t}^{pole} from inclusive $\sigma_{t\bar{t}}$ at $\sqrt{s} = 13 \text{ TeV}$ in ATLAS

EPJC 80 (2020) 528

 $e^{\mp}\mu^{\pm}$ channel, 36.1 fb⁻¹ (2015+2016)

- event count in bins of b-jet multiplicity
- significant improvements in lepton ID and luminosity determination
- \rightarrow more details in Olga Bylund's talk

$$\begin{split} \sigma_{t\bar{t}}^{(e\mu)} = & 826.4 \pm 3.6 \text{ (stat)} \pm 19.6 \text{ (syst) pb} \\ \sigma_{t\bar{t}}^{th} = & 832 \begin{array}{c} ^{+20}_{-29} \text{ (scale)} \pm 35 \text{ (PDF} + \alpha_{\mathrm{S}} \text{) pb} \\ \text{(Top++, NNLO+NNLL)} \end{split}$$

- total uncertainty of 2.4%, cfr: $\Omega \simeq 5\%$ of theoretical prediction **2** 4% of CMS result in $\ell^+\ell^-$ channels
- \rightarrow most precise 13 TeV measurement

extraction of m_{t}^{pole}

- NNLO+NNLL, CT14_nnlo PDFs
- dependence of measured $\sigma_{t\bar{t}}$ on m_t^{MC} accounted for, while $m_t^{MC} = m_t^{pole}$

$$m_{\rm t}^{\rm pole} = 173.1 \ ^{+2.0}_{-2.1} \ {\rm GeV}$$

 \rightarrow limited by QCD scale and PDF+ $\alpha_{\rm S}$ uncertainties

- $R^{
 m tar t}_{13/8}$ and $R^{
 m tar t}_{13/7}$ sensitive to PDFs
- cancellation of correlated uncertainties
- lower gluon density at high-x in ABM12 (lesser extent in ABMP16)

ATLAS cross section ratios

ATLAS

13 TeV, 3.2 fb⁻¹

statistics

+expt. syst. +luminositv

ABM12LHC

CT14 NNPDE3.0

EPJC 80 (2020) 528

- $R_{13/8}^{t\bar{t}}$ and $R_{13/7}^{t\bar{t}}$ sensitive to PDFs
- cancellation of correlated uncertainties
- lower gluon density at high-x in ABM12 (lesser extent in ABMP16)
- luminosity uncertainty suppressed using $t\bar{t}/Z$ cross section (double) ratios

EPJC 79 (2019) 368

- 35.9 ${\rm fb}^{-1}$ (2016), ${\rm e}^{\mp}\mu^{\pm}$ channel
- simultaneous measurement of $\sigma_{t\bar{t}}$ and \textit{m}_{t}^{MC} \rightarrow mitigation of dependence
- precision of 4.2% limited by luminosity (2.5%) and lepton IDs (2.2%)

 $\sigma_{\mathrm{t}ar{\mathrm{t}}} =$ 815 \pm 2 (stat) \pm 29 (syst) \pm 20 (lum) pb

$m_{ m t}(m_{ m t})$ and $lpha_{ m S}(m_Z)$ from CMS $\sigma_{ m tar t}$ measurement at 13 TeV $({ m e}^{\mp}\mu^{\pm})$

EPJC 79 (2019) 368

- 35.9 fb⁻¹ (2016), $e^{\mp}\mu^{\pm}$ channel
- simultaneous measurement of $\sigma_{t\bar{t}}$ and $m_t^{\rm MC}$ \rightarrow mitigation of dependence
- precision of 4.2% limited by luminosity (2.5%) and lepton IDs (2.2%)

 $\sigma_{
m tar t}=$ 815 \pm 2 (stat) \pm 29 (syst) \pm 20 (lum) pb

- values of $\alpha_{\rm S}(m_{\rm Z})$ and $m_{\rm t}(m_{\rm t})$ extracted using NNLO calculations in $\overline{\rm MS}$ scheme
 - most precise NNLO $lpha_{
 m S}$ result at hadron collider, and most precise $m_{
 m t}(m_{
 m t})
 ightarrow 1.2\%$
- cannot obtain simultaneous information on $\alpha_{\rm S}$, $m_{\rm t}$, and PDFs from inclusive $\sigma_{\rm t\bar{t}}$
- \rightarrow need multi-differential measurement

3D normalized $\sigma_{ m t\bar t}$ at 13 TeV $(\ell^+\ell^-)$ and global QCD analysis (CMS)

arXiv:1904.05237

3D normalized cross section

- **1** $m_{
 m tar t}
 ightarrow$ sensitive to $m_{
 m t}$
- **2** $N_{jet} \rightarrow determine \alpha_S$
- $\mathbf{3} \, y_{\mathrm{t}\bar{\mathrm{t}}} \rightarrow \mathsf{info} \, \mathsf{about} \, \mathsf{PDFs}$
- reconstruction of $t\bar{t}$ system independent of m_{t}^{MC}
- parton-level cross section compared to NLO+PS

3D normalized $\sigma_{ m t\bar t}$ at 13 TeV $(\ell^+\ell^-)$ and global QCD analysis (CMS)

arXiv:1904.05237

3D normalized cross section

- **1** $m_{
 m t\bar{t}}
 ightarrow$ sensitive to $m_{
 m t}$
- **2** $N_{jet} \rightarrow determine \alpha_S$
- $\mathbf{3} \, y_{\mathrm{t} \mathrm{\bar{t}}}
 ightarrow \mathrm{info}$ about PDFs
- reconstruction of $t\bar{t}$ system independent of m_{t}^{MC}
- parton-level cross section compared to NLO+PS

global fit to $t\bar{t}$ +HERA data

- simultaneous NLO fit of $m_{
 m t}^{
 m pole}$, $lpha_{
 m S}$, and PDFs
- improvement in gluon PDF at high-x, reduced correlations

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1135^{+0.0021}_{-0.0017}$

 $m_{
m t}^{
m pole} = 170.5 \pm 0.8\,{
m GeV}$ ightarrow most precise result to date

threshold effects in $\mathrm{t}\overline{\mathrm{t}}$ production

most sensitivity to $m_{
m t}$ comes from threshold region $(m_{
m tar t} o 2m_{
m t})$

threshold effects

- important for this kind of analyses
- not captured by fixed-order calculations

however, QCD effects partly captured by

- fixed-order + parton showers
- all-order soft gluon resummation (effect up to $+0.7\,{
 m GeV}$ on $m_{
 m t}^{
 m pole}$)

threshold effects in $\mathrm{t}\overline{\mathrm{t}}$ production

most sensitivity to $m_{
m t}$ comes from threshold region $(m_{
m tar t}
ightarrow 2m_{
m t})$

threshold effects

- important for this kind of analyses
- not captured by fixed-order calculations

however, QCD effects partly captured by

- fixed-order + parton showers
- all-order soft gluon resummation (effect up to $+0.7\,{
 m GeV}$ on $m_{
 m t}^{
 m pole}$)

new study in JHEP 06 (2020) 158

- EFT approach used to include next-to-leading power (NLP) Coulomb corrections, to all orders in $\alpha_{\rm S}$
- better description of CMS data near the production threshold
- effect on $m_{
 m t}^{
 m pole}$ up to $+1.4\,{
 m GeV}$
- \rightarrow dedicated talk by Li Lin Yang

$$ho_{
m S}=rac{2m_0}{m_{
m tar{t}+1\mbox{-jet}}},\quad m_0=170\,{
m GeV}$$

- ightarrow sensitive to $m_{
 m t}$ at large $ho_{
 m S}$ (production threshold)
 - 20.2 ${
 m fb}^{-1}$ at $\sqrt{s}=8\,{
 m TeV}$

method

- parton-level normalized differential cross section
- compared to NLO+PS predictions (on-shell, $\overline{\mathrm{MS}}$)
- 3 times larger scale uncertainty in $\overline{\mathrm{MS}}$ scheme (expected at threshold)

$$egin{aligned} m_{ ext{t}}(m_{ ext{t}}) &= 162.9\, ext{GeV}
ightarrow m_{ ext{t}}^{ ext{pole}} &= 170.9\, ext{GeV} \ \Rightarrow ext{consistent results} \end{aligned}$$

$$m_{
m t}^{
m pole} = 171.1 \pm 1.0 \ (exp) \ ^{+0.7}_{-0.3} \ (th) \, {
m GeV}$$

 $m_{
m t}(m_{
m t}) = 162.9 \pm 1.1 \ (exp) \ ^{+2.1}_{-1.2} \ (th) \, {
m GeV}$

10/16

PDF determination from W, Z/γ^* , and $t\bar{t}$ cross sections (ATLAS)

joint fit with HERA DIS data (ep)

- W, Z/γ^* (7 TeV) ightarrow quark PDFs
- $t\bar{t}$ (8 TeV) \rightarrow high-x gluon PDF

 \rightarrow focus on impact of $\mathrm{t}\bar{\mathrm{t}}$ ATLAS data

PDF determination

- general-mass variable-flavour-number scheme (n_f → n_f + 1 transitions)
- NNLO QCD + NLO EW (×Fitter)

sensitive distributions

- 1 $y_{t\bar{t}}$ (dilepton)
- 2 $m_{
 m t\bar{t}}$ and $p_{
 m T}^t$ ($\ell+{
 m jets}$)

correlations between distributions determined with bootstrap method $\Rightarrow \rho_{\rm T}^t, m_{\rm t\bar{t}}, y_{\rm t\bar{t}} \text{ used simultaneously}$

ATL-PHYS-PUB-2018-017

results

- 1 harder gluon distribution at high-x
- 2 reduced uncertainty at high-x

first investigation of the running of $m_{\rm t}$ (CMS)

in $\overline{\text{MS}}$ scheme, m_{q} dependence on scale μ described by RGE: $\frac{dm_{\text{q}}}{d\mu^2} = -\gamma(\alpha_{\text{S}})m_{\text{q}}$

- probe of validity of pQCD
- sensitive to BSM contributions

method

- $m_{
 m t}(\mu)$ extracted at NLO vs $\mu=m_{
 m tar t}$ from measurement of d $\sigma_{
 m tar t}/{
 m d}m_{
 m tar t}$
- $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$ determined at parton-level with maximum-likelihood unfolding (see Valentina Vecchio's talk)
- $m_{
 m t}^{
 m MC}$ dependence incorporated in fit

first investigation of the running of $m_{\rm t}$ (CMS)

in $\overline{\text{MS}}$ scheme, m_{q} dependence on scale μ described by RGE: $\frac{dm_{\text{q}}}{d\mu^2} = -\gamma(\alpha_{\text{S}})m_{\text{q}}$

- probe of validity of pQCD
- sensitive to BSM contributions

method

- $m_{
 m t}(\mu)$ extracted at NLO vs $\mu = m_{
 m tar t}$ from measurement of d $\sigma_{
 m tar t}/{
 m d}m_{
 m tar t}$
- $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$ determined at parton-level with maximum-likelihood unfolding (see Valentina Vecchio's talk)
- $m_{
 m t}^{
 m MC}$ dependence incorporated in fit
- slope: r(μ) = m_t(μ)/m_t(μ_{ref})
 (a) cancellation of systematics
 (a) solely depends on RGE

results

- good agreement with RGE
- no-running excluded at > 95% C.L.

running of $m_{\rm t}$ with "dynamic" scale

results of PLB 803 (2020) 135263 obtained with

- $\mu_{\rm r} = \mu_{\rm f} = \mu_m = m_{\rm t}$
- converting $m_t(m_t) \rightarrow m_t(m_{t\bar{t}})$ using appropriate RGEs

in JHEP 08 (2020) 027 (see Stefano Catani's talk) it is argued that

- dynamic effect of $m_t(\mu_m)$ should be included in the calculation
- best choice is $\mu_m = m_{t\bar{t}}/2$ (which approaches $m_{\rm t}$ at threshold)
- scale is set bin-by-bin (bbb)

Matteo M. Defranchis

running of $m_{\rm t}$ with "dynamic" scale

- results of PLB 803 (2020) 135263 obtained with
 - $\mu_{\rm r} = \mu_{\rm f} = \mu_m = m_{\rm t}$
 - converting $m_t(m_t) \rightarrow m_t(m_{t\bar{t}})$ using appropriate RGEs

in JHEP 08 (2020) 027 (see Stefano Catani's talk) it is argued that

- dynamic effect of $m_t(\mu_m)$ should be included in the calculation
- best choice is $\mu_m = m_{t\bar{t}}/2$ (which approaches $m_{\rm t}$ at threshold)
- scale is set bin-by-bin (bbb)

analysis of repeated at NLO with

- $\mu_{\rm r} = \mu_{\rm f} = m_{\rm t}$
- **2** $\mu_m = m_{t\bar{t}}/2$ (bbb)
- \rightarrow assess effect of μ_m alone

CMS public web page

- result qualitatively similar to original ones
- quantitative differences do not alter main conclusions of the paper
 - good agreement with RGE
 - 2 no-running excluded at > 95% C.L.
- \rightarrow would benefit from NNLO calculation

non-QCD results from top quark measurements in ATLAS and CMS

\rightarrow electroweak parameters

neutrino

top quark Yukawa coupling from $t\bar{t}$ at 13 TeV (CMS)

• approximate $\alpha_{\rm S}^3 \alpha$ EW corrections obtained with Hathor and applied to NLO MC

 $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}} = y_t - y_{\bar{t}}$ distributions altered by exchange of massive bosons (including H) advantage: no assumption on other Higgs couplings

• approximate $\alpha_S^3 \alpha$ EW corrections obtained with Hathor and applied to NLO MC

 $\rightarrow 137~{\rm fb}^{-1}$ at 13 TeV, $\ell\ell$ channel

- $M_{b\bar{b}\ell\bar{\ell}}$ and $|y_{b\bar{\ell}} y_{\bar{b}\ell}|$ used as proxies for $m_{t\bar{t}}, \Delta y_{t\bar{t}} \Rightarrow$ no top reconstruction
- profile likelihood fit to double-differential distributions

$$\mathcal{Y}_{\rm t} = y_{\rm t}^{\rm meas}/y_{\rm t}^{\rm SM} = 1.16^{+0.24}_{-0.35}$$

ATLAS combination of Higgs results: $\mathcal{Y}_{\rm t}=0.98\pm0.14$

 \rightarrow more details in Evan Ranken's talk

CMS-PAS-TOP-19-008

CKM elements in single top t-channel at 13 TeV (CMS)

first direct + model-independent determination of $|V_{\rm tb}|$ and $|V_{\rm td}|^2 + |V_{\rm ts}|^2$

- no assumption of unitarity
- 2 no assumption of no BSM physics
- CKM elements determined from signal strength of ST_{b,b}, ST_{a,b}, ST_{b,a}
- BDT trained in exclusive categories of jet and b-tagged jet multiplicity
- profile likelihood fit of BDT output

in the **BSM scenario** where $R_{\Gamma} = \Gamma_{t}^{obs} / \Gamma_{t}$ is free:

 $|V_{tb}| = 0.988 \pm 0.011 \text{ (stat+prof)} \pm 0.021 \text{ (nonprof)}$ $|V_{td}|^2 + |V_{ts}|^2 = 0.06 \pm 0.05$ (stat+prof) ± 0.04 (nonprof) $R_{\Gamma} = 0.99 \pm 0.42$ (stat+prof) ± 0.03 (nonprof).

 \rightarrow precision on $|V_{tb}|$ improved by 50% w.r.t previous CMS measurement in single-top

Events / 0.07 units

E.0-0ata / Lit

22 20

18

PLB 808 (2020) 135609

summary

ATLAS+CMS Preliminary LHCtopWG	m _{top}	from cross-section meas	urements Sep 2019
total st	at	$m_{top} \pm tot \; (stat \pm syst \pm theo)$	Ref.
σ(tī) inclusive, NNLO+NNLL			
ATLAS, 7+8 TeV	· · · ·	172.9 2.6	[1]
CMS, 7+8 TeV	• • •	173.8 118	[2]
CMS, 13 TeV		169.9 $^{+1.9}_{-2.1}$ (0.1± 1.5 $^{+1.2}_{-1.5}$)	[3]
ATLAS, 13 TeV		173.1 +2.0	[4]
σ(tī+1j) differential, NLO			
ATLAS, 7 TeV		173.7 ^{+2.3} _{-2.1} (1.5 ± 1.4 ^{+1.0} _{-0.5})	[5]
CMS, 8 TeV		169.9 ^{+4.5} (1.1 ^{+2.5} ^{+3.6})	[6]
ATLAS, 8 TeV		171.1 $^{+1.2}_{-1.0}~(0.4\pm0.9~^{+0.7}_{-0.3})$	[7]
σ(tt) n-differential, NLO			
ATLAS, n=1, 8 TeV		173.2 \pm 1.6 (0.9 \pm 0.8 \pm 1.3	2) [8]
CMS, n=3, 13 TeV +++		170.9 ± 0.8	[9]
mtop from top quark decay	[1] BRJC 74 (2014) 3109 (3) JHEP 10 (2015) 121 (9) w39v:	1904.05227 (2019)
 CMS, 7+8 TeV comb. [10] 	[2] JHEP 03 ([2] EPJC 79 (2016) 029 [8] DMS-PAS-TOP-13-005 [10] PRD 2016) 368 [7] a/Kv/1905/02902 (2019) [11] EP40	93 (2916) 972904 279 (2916) 290
ATLAS, 7+8 TeV comb. [11]	(4) ATLAS-D	DNF-2019-041 (8) EFUC 77 (2017) 804	1
55 160 165 170	175	180 185	190
r	n _{ice} [GeV	1	

top and QCD parameters

- most recent m_t results using $t\bar{t}$ cross sections (ATLAS & CMS)
- running of $m_{
 m t}$ in $\overline{
 m MS}$ scheme (CMS)
- determination of $\alpha_{\rm S}$ from t $\bar{\rm t}$ (CMS)

PDF determination with $t\bar{t}$ data

- PDF determination from W, Z/γ*, tt
 cross sections + HERA data (ATLAS)
- simultaneous fit of $m_t^{\rm pole}$, $\alpha_{\rm S}$, and PDF with 3D $\sigma_{\rm t\bar{t}}$ at 13 TeV and HERA DIS data (CMS)
- \rightarrow improvement in gluon PDF at high-x

top and EW sector (CMS)

- extraction of top Yukawa coupling $t\bar{t}$ distributions at 13 TeV
- first model-independent extraction of CKM elements from *t*-ch. single top at 13 TeV → 50% improvement

Thank you for your attention

$m_{ m t}^{ m pole}$ from inclusive $\sigma_{ m tar t}$ at 13 TeV (ATLAS)

PDF set	m_t^{pole} (GeV)
CT14	$173.1^{+2.0}_{-2.1}$
NNPDF3.1_notop	$172.9^{+1.7}_{-1.7}$
CT10	$172.1^{+2.0}_{-2.0}$
MSTW	$172.3^{+2.0}_{-2.1}$
NNPDF2.3	$173.4^{+1.9}_{-1.9}$
PDF4LHC	$172.1_{-2.0}^{+3.1}$

Uncertainty source	Δm_t^{pole} (GeV)
Data statistics	0.2
Analysis systematics	0.6
Integrated luminosity	0.8
Beam energy	0.1
PDF+ $\alpha_{\rm S}$	$^{+1.5}_{-1.4}$
QCD scales	$^{+1.0}_{-1.5}$
Total uncertainty	$^{+2.0}_{-2.1}$

PDF set	$\alpha_S(m_Z)$
ABMP16	0.1139 ± 0.0023 (fit + PDF) $^{+0.0014}_{-0.0001}$ (scale)
NNPDF3.1	0.1140 ± 0.0033 (fit + PDF) $^{+0.0021}_{-0.0002}$ (scale)
CT14	0.1148 ± 0.0032 (fit + PDF) $^{+0.0018}_{-0.0002}$ (scale)
MMHT14	0.1151 ± 0.0035 (fit + PDF) $^{+0.0020}_{-0.0002}$ (scale)

	ABMP16	NNPDF3.1	CT14	MMHT14
m_t^{pole} [GeV]	170.37	172.5	173.3	174.2
RUNDEC loops	3	2	2	3
$m_t(m_t)$ [GeV]	160.86	162.56	163.30	163.47
$\alpha_S(m_Z)$	0.116	0.118	0.118	0.118
α_S range	0.112 - 0.120	0.108 - 0.124	0.111 - 0.123	0.108 - 0.128

PDF set	$m_{\rm t}(m_{\rm t})$ [GeV]
ABMP16	161.6 ± 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
NNPDF3.1	164.5 ± 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
CT14	165.0 ± 1.8 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
MMHT14	164.9 ± 1.8 (fit + PDF + α_S) $^{+0.1}_{-1.1}$ (scale)

PDF set	$m_{\rm t}^{\rm pole}$ [GeV]
ABMP16	169.9 ± 1.8 (fit + PDF + α_S) $^{+0.8}_{-1.2}$ (scale)
NNPDF3.1	173.2 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.3}$ (scale)
CT14	173.7 ± 2.0 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)
MMHT14	173.6 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)

$\alpha_{ m S}(m_{ m Z})$ and $m_{ m t}^{ m pole}$ from 3D normalized $\sigma_{ m tar t}$ at 13 TeV (CMS)

ATLAS+CMS Preliminary LHCtopWG	m _{top}	from cross-section meas	urements Sep 2019
total s	tat	$m_{top}\pm$ tot (stat \pm syst \pm theo)	Ref.
σ(tť) inclusive, NNLO+NNLL ATLAS, 7+8 TeV	.	172.9 +2.5	[1]
CMS, 7+8 TeV		173.8 +1.7	[2]
CMS, 13 TeV		169.9 $^{+1.9}_{-2.1}$ (0.1 \pm 1.5 $^{+1.2}_{-1.5}$)	[3]
ATLAS, 13 TeV		173.1 +2.0	[4]
σ(tī+1j) differential, NLO ATLAS, 7 TeV		173.7 +2.3 -2.1 (1.5 ± 1.4 +1.0)	[5]
CMS, 8 TeV	_	169.9 ^{+4.5} _{-3.7} (1.1 ^{+2.5} _{-3.1} ^{+3.6})	[6]
ATLAS, 8 TeV	•	171.1 $^{+1.2}_{-1.0}$ (0.4 ± 0.9 $^{+0.7}_{-0.3}$)	[7]
c(ti) n-differential, NLO ATLAS, n=1, 8 TeV CMS, n=3, 13 TeV		173.2 ± 1.6 (0.9 ± 0.8 ± 1. 170.9 ± 0.8	2) [8] [9]
m _{top} from top quark decay CMS, 7+8 TeV comb. [10] ATLAS, 7+8 TeV comb. [11]	(1) EP.JC 74 (2) JHEP 08 (2) EP.JC 76 (4) ATLAG-O	2014 3109 [2] JHEP 10 (2016) 121 [3] JKG 2016] 029 [4] CMS-PAS-TOP-13-008 [10] PRD 2016] 348 [7] JKG-156G.02302 (2018) [11] EPJ 2016] 348 [7] JKG-156G.02302 (2018) [11] EPJ 2016-2019-041 [3] EPJ 27 (2017) 804	1904.05237 (2018) 93 (2016) 072004 2 79 (2018) 290
55 160 165 170	175 m [GeV	180 185	190

Mass scheme	m_t^{pole} [GeV]	$m_t(m_t)$ [GeV]
Value	171.1	162.9
Statistical uncertainty	0.4	0.5
Simulation uncertainties		
Shower and hadronisation	0.4	0.3
Colour reconnection	0.4	0.4
Underlying event	0.3	0.2
Signal Monte Carlo generator	0.2	0.2
Proton PDF	0.2	0.2
Initial- and final-state radiation	0.2	0.2
Monte Carlo statistics	0.2	0.2
Background	< 0.1	< 0.1
Detector response uncertainties		
Jet energy scale (including b-jets)	0.4	0.4
Jet energy resolution	0.2	0.2
Missing transverse momentum	0.1	0.1
b-tagging efficiency and mistag	0.1	0.1
Jet reconstruction efficiency	< 0.1	< 0.1
Lepton	< 0.1	< 0.1
Method uncertainties		
Unfolding modelling	0.2	0.2
Fit parameterisation	0.2	0.2
Total experimental systematic	0.9	1.0
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)
Theory PDF $\oplus \alpha_s$	0.2	0.4
Total theory uncertainty	(+0.7, -0.3)	(+2.1, -1.2)
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)

		lepton+jets p_T^t , m_{tt}
		and dilepton y_{tt} spectra
total χ^2/NDF		1253.8 / 1061
Partial χ^2 /NDP	HERA	1149 / 1016
Partial χ^2 /NDP	ATLAS $W, Z/\gamma^*$	78.9 / 55
Partial χ^2 /NDP	ATLAS lepton+jets p_T^t , m_{tt}	16.0 / 15
Partial χ^2 /NDP	ATLAS dilepton y_{tt}	5.4/5

observed running parametrized as

$$f(x, \mu) = x [r(\mu) - 1] + 1$$

such that

- $f(1,\mu) = r(\mu) \rightarrow \mathsf{RGE}$ running
- $f(0,\mu) = 1 \rightarrow$ no running
- ightarrow best-fit value of x extracted via χ^2 fit of $f(x,\mu)$ to the ratios

fixed scale:
$$\hat{x} = 2.05 \pm 0.61$$
 (fit) $^{+0.31}_{-0.55}$ (PDF $+ \alpha_{\rm S}$) $^{+0.24}_{-0.49}$ (extr)
dynamic scale: $\hat{x} = 1.57 \pm 0.57$ (fit) $^{+0.28}_{-0.53}$ (PDF $+ \alpha_{\rm S}$) $^{+0.21}_{-0.46}$ (extr)

CKM elements from t-ch. single top at 13 TeV (CMS) - I

Category	Enriched in	Cross section \times branching fraction	Feynman diagram
2j1t	ST _{b,b}	$\sigma_{t-ch,b} \mathcal{B}(t \to Wb)$	1a
3j1t	$ST_{b,q}, ST_{q,b}$	$\sigma_{t-ch,b}\mathcal{B}(t \rightarrow Wq), \ \sigma_{t-ch,q}\mathcal{B}(t \rightarrow Wb)$	1b, 1c, 1d
3j2t	ST _{b,b}	$\sigma_{t-ch,b}\mathcal{B}(t \to Wb)$	1a

CKM elements from t-ch. single top at 13 TeV (CMS) - II

Treatment	Uncertainty	$\Delta\sigma_{ST_{b,b}}/\sigma$ (%)
Profiled	Lepton trigger and reconstruction	0.50
	Limited size of simulated event samples	3.13
	tt modelling	0.66
	Pileup	0.35
	QCD background normalisation	0.08
	W+jets composition	0.13
	Other backgrounds $\mu_{\rm R}/\mu_{\rm F}$	0.44
	PDF for background processes	0.42
	b tagging	0.73
	Total profiled	3.4
Nonprofiled	Integrated luminosity	2.5
	JER	2.8
	JES	8.0
	PDF for signal process	3.8
	Signal $\mu_{\rm R}/\mu_{\rm F}$	2.4
	ME-PS matching	3.7
	Parton shower scale	6.1
	Total nonprofiled	11.5
Total uncertaint	у	12.0

W boson polarization in top decays: ATLAS+CMS 8 TeV combination

W polarization fractions F_0, F_L, F_R determined by

- () V-A structure of $t \to Wb$ vertex
- ${\it 2} \ m_{\rm t}, \ m_{\rm W}, \ m_{\rm b}$
- 8 possible anomalous couplings

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right)\left(F_0\right) + \frac{3}{8}\left(1-\cos\theta^*\right)^2\left(F_1\right) + \frac{3}{8}\left(1+\cos\theta^*\right)^2\left(F_B\right) + \frac{3}{8}\left(1+\cos\theta^*$$

→ experimental uncertainties (3 - 5%) larger than theoretical ones (NNLO $\simeq 2\%$) \Rightarrow combination

JHEP 08 (2020) 051

constraint:

 $F_R = 1 - F_L - F_0$

- improved precision of 25 (29)% for F₀ (F_L)
- almost doubled precision on F_R
- derived limits on anomalous coupling in EFT framework

CERN