

Bottlenecks in precision top-quark measurements

Valentina Vecchio on behalf of the ATLAS and CMS collaborations University of Manchester

13th International Workshop on Top-Quark Physics (TOP2020) 14/09/2020

The top precision measurements era

*

Since the discovery of the ttbar (1995) and single top (2009) processes at Tevatron:

- LHC entered a new era of precision measurements
- During Run 1 and 2 LHC delivered millions of top-quark events
- Statistical uncertainty is no more an issue for inclusive cross-section and differential crosssection measurements in the 'low' p_T region

Top quark properties are extensively measured to test SM and to search for BSM \top modelling effects dominate the final result

There has been a big effort to improve the treatment of the modelling uncertainties from both the theoretical and experimental side:

- Higher order calculations
- Tuning of models using data

'To profile or not to profile'

Top precision measurements:

- Differential and inclusive cross sections
 - Fiducial and full phase space
- SM parameters measurements

Also informations on the systematic uncertainties can be extracted from data (profiled) with the aim of reducing them. However, a general recipe for when to profile or not does not exist.

Uncertainties are **profiled** in:

- Inclusive cross section measurements (see Olga Bessidskaia Bylund's talk)
- Rare processes and **properties** measurements

Differential cross section measurements usually **don't profile** their uncertainties

• First unfolded measurements with profiled uncertainties

Contents

Building a Profile Likelihood Fit:

- Systematics treatment via Nuisance Parameters
- Prevention of unphysical systematic uncertainties reduction
 - Smoothing, Bootstrapping, decorrelation and factorisation
- Interpreting uncertainties reduction

Differential cross sections:

- Profiling and Unfolding
- Results from normalised cross sections
 - Covariance Matrix for single and multiple variables

Measurement of inclusive cross section

Measurement of ttbar cross section in I+jets (ATLAS) and dilepton (CMS) final state

- Fiducial and full phase space
- Fit runs on several variables of different signal regions

$$\sigma_{fid} = A_{fid} \cdot \sigma_{incl}, \quad A_{fid} = \frac{N_{fid}}{N_{tot}}$$

FIDUCIAL CROSS SECTION

Extraction of fiducial cross section from data using profile likelihood fit

INCLUSIVE CROSS SECTION

ATLAS performs fit

- Impact of modelling encoded in A
- Cross check on result by extrapolation to full phase space

CMS extrapolates from fiducial cross section

• Fixed uncertainties to fiducial post fit values and evaluated impact on A

Both measurements externalise luminosity uncertainty:

No NP defined, the fit is repeated for up and down variation

ATLAS ttbar(I+jets) inclusive cross-section arXiv:2006.13076

CMS ttbar(dilepton) inclusive cross-section Eur. Phys. J. C (2019) 79:368

Profile Likelihood Method

A Profile Likelihood Fit is a statistical tool largely used to estimate various top quark properties (xsec, width, mass...)

- Given a probability model *F(x_i)* for the variable under study *x_i*
 - Prediction model depends on:
 - parameter of interest μ
 - variations due to systematic effects (encoded in nuisance parameters, θ)
- Likelihood quantifies the 'likeness' of observed data and this model, *F(x_i^{data})*

$$\mathscr{L}(\mu, \overrightarrow{\theta}) = \prod_{i=1} \mathscr{P}(x_i(\mu, \overrightarrow{\theta}), x_i^{data}) \prod_{t=1} \pi(\theta_t),$$

where $\pi(\theta_t)$ represents the PDF of a Nuisance Parameter, encoding the systematic variation θ_t of the models bins:

- Assumed to have a Gaussian distribution for most of the uncertainties
- Sometimes log-normal or gamma functions also are used

Different types of systematics

DETECTOR UNCERTAINTIES

Originate at any point in the **detector simulation**:

- Trigger Efficiency
- Lepton identification and isolation
- Jet flavour tagging efficiency
- Objects' momentum/energy scale

The quantity that might be mis-modelled is usually well defined and also measured in dedicated regions

Re-weighting of simulation

Changing the properties of final state objects

N.B. Detector uncertainties have modelling components (i.e. calibration of b-jets uses ttbar events)

Different types of systematics

PHYSICS MODELLING UNCERTAINTIES*

Originate at any other step of the simulation:

- Parton Density Function
- Perturbative calculations
 - Matrix Element
 - Parton Shower
 - ME+PS matching
- Non-perturbative calculations
 - Hadronisation
 - Underlying events

*More details about the definition of the modelling uncertainties in Simone Amoroso's talk

Alternative simulations

Comparison of different generators or variation of nominal simulation parameters

Nuisance Parameters

Example: measurement of the b-tagging efficiency ε_b :

- The ε_b in the simulation is re-weighted to match value found in data
- Up and down variations by varying correction factors within calibration uncertainty

Effect on our model for the variable X given by the systematic variation is used to build NP

If θ_0 is the best estimate of θ given by the calibration and $\Delta \theta$ the corresponding uncertainty, we apply the coordinates transformation $\theta \to \alpha(\theta)$ to get normalised pulls

 $\alpha = (\theta - \theta_0) / \Delta \theta$

Prevention of spurious pulls and constrains

The probability model for the variable being examined is estimated using Monte Carlo simulations:

- This model is affected by systematic uncertainties which can distort it at any simulation step
- To prevent unphysical pulls and constrains of NPs due to MC statistical fluctuations:

Profiling modelling uncertainties

No.

Top p_T re-weighting NP pulled towards NNLO prediction

ATLAS constrain of Shower Migration Parameter due to difference w.r.t nominal larger than data uncertainty

• Cross-check via decorrelation of different SRs and decoupling of normalisation and shape

CMS assigned statistical uncertainty on NPs using toy experiments:

Estimated spurious component of constrains

ATLAS ttbar(I+jets) inclusive cross-section arXiv:2006.13076

CMS ttbar(dilepton) inclusive cross-section Eur. Phys. J. C (2019) 79:368

Towards better ttbar modelling

CMS

- Compared unfolded data to different hdamp values, tuned hdamp = 1.581mtop
- Uncertainty obtained by varying hdamp within $0.996m_{top} < hdamp < 2.239m_{top}$

ATLAS*

The ISR uncertainty is decorrelated into different components:

- 1. Split in scale variations and alternative hdamp parameters
 - Tuned value of hdamp = 1.5m_{top}
 - Symmetrisation of hdamp = 3.0 m_{top}
- 2. Studied effect of correlating the HS scale variations with the PS tune
 - Envelope of the HS and PS independent variations gives larger uncertainty

*More details about this in Simone Amoroso's talk

ATLAS ttbar(I+jets) inclusive cross-section arXiv:2006.13076

CMS parton shower tuning CMS PAS TOP-16-021

Combining Unfolding and Profiling

CMS Maximum Likelihood Unfolding

- The unfolding problem was found to be wellconditioned, and therefore no regularisation is needed
- Acceptance and efficiencies not free parameters
- Improved uncertainty on unfolded m(tt) thanks uncertainty profiling

CMS dilepton differential + running mass <u>Phys. Lett. B 803 (2020) 135263</u> CMS dilepton differential <u>JHEP 02 (2019) 149</u>

Profiling results

M(tt) bin	1	2	3	4
Total	+4.7	+5.0 -	+5.0 -	+7.2
Uncert	-4.4	4.8	4.8	-6.9

Combining Unfolding and Profiling

ATLAS Fully Bayesian Unfolding

- Asymmetry measurement @13 TeV combine resolved and boosted measurements
- Exploits profile likelihood framework to perform extraction in different regions of the phase space
- Reduction of the uncertainty in the different regions probed by the analysis

Statistical and systematic uncertainties: Covariance Matrix

Quantification of the agreement between measured normalised unfolded distributions* and theoretical predictions

$$\chi^2 = V_{N_{b-1}}^T \cdot Cov_{N_{b-1}}^{-1} \cdot V_{N_{b-1}},$$

where $V_{N_{b-1}}$ is the vector of differences between data and prediction and $Cov_{N_{b-1}}$ is the submatrix derived from the full covariance matrix.

Proper definition of covariance matrix is crucial to test the available models Different solutions proposed by the analyses

Covariance Matrix expressed as the sum of **two matrices**:

- 1. Statistical, detector systematics and background modelling
- 2. Signal modelling (generator, PS, ISR/FSR and PDF)

Two different approaches for the detector systematic and background uncertainties:

- Correlations estimated from toy experiments
- Evaluated bins systematic uncertainty shift and "assumed" correlation
- NB: This is independent from the number of unfolded variables we want to test

Statistical and systematic uncertainties: Covariance Matrix - single variable

Toy experiments for both statistical and systematic uncertainties:

 Statistical and systematic correlation matrix derived from toy events

Difference between systematic and nominal is taken as standard deviation

 Correlations between bins by looking at systematic shifts direction

ATLAS ttbar(I+jets) differential cross-section <u>Eur. Phys. J. C (2019) 79:1028</u> CMS normalised multi-differential cross sections <u>arXiv:1904.05237</u>

Statistical and systematic uncertainties: Covariance Matrix - multiple variables

ATLAS ttbar dilepton differential <u>Eur. Phys. J. C (2020) 80:528</u>

- Different lepton variables tested
- The statistical correlations between distributions were evaluated using pseudo-experiments
- Systematic uncertainties were assumed to be correlated between distributions

CMS spin correlation and polarisation <u>Phys. Rev. D</u> <u>100 (2019) 072002</u>

- Measured coefficients from different normalised differential xsec
- Systematic covariance matrices derived by looking to shifts direction and assigning ±100% correlation between bins of different distributions

Statistical and systematic uncertainties: Covariance Matrix - normalised variables

In the newly released ttbar all-hadronic differential cross-section measurement calculation of covariance matrix slightly changed for normalised results:

- The signal-modelling shifts are derived by using the expected relative variations from the associated systematic uncertainty to scale each bin of the Poisson-fluctuated distribution unfolded with nominal corrections
- Varied distributions are normalised to unity after all effects are included
- Correlation properly handled

This new method for the calculation of modelling covariance matrix found to improve p-value results in some variables

Summary

Most of the top quark related measurements are nowadays limited by the systematic uncertainty:

- Modelling of the top events plays a big role in most of the results
- Effort in the community to improve these uncertainties
 - Here we presented the treatment of the systematic uncertainty in the context of Profile
 Likelihood Fits
 - ATLAS and CMS agree on similar procedure
 - ✓ How to prevent unphysical constrain and pull of NP
 - $\checkmark\,$ Real constrains and pulls from fit to data
 - In the future we might want to tune better the available models
 - Unfolded data used to test predictions
 - First results published with profiled uncertainties within unfolding analyses
 - χ^2 test uses covariance matrix defined in similar way
 - \checkmark Both single and multiple variables tested

The road ahead

Given the observed constrains on the systematic uncertainties in the future we might want to invest time in model improvement:

- How to better tune them from data?
- Better estimates of the uncertainties by varying model parameters within a given generator instead of comparing different generators
- Study the correlations between different effects

BACKUP

'To profile or not to profile'

We consider as top precision measurements those which uncertainty is mainly systematic such as:

- Differential and inclusive cross sections
 - Fiducial and full phase space
- SM parameters measurements

Also informations on the systematic uncertainties can be extracted from data (profiled) with the aim of reducing them.

However, a general recipe for when to profile or not does not exist

 Uncertainties are profiled in: Inclusive cross section measurements Rare processes and properties measurements 	 Differential cross section measurements usually don't profile their uncertainties First unfolded measurements with profiled uncertainties
Inclusive cross section measurements Uncertainties are profiled CMS - tt+bb PLB 803 (2020) 135285, tt+jets JHEP 07 (2020) 125 and tt(e/mu +tau) JHEP 02 (2020) 191 in the fiducial phase space and EPJC 79 (2019) 368 ATLAS - tt(l+jets) arXiv:2006.13076 in fiducial and full phase space, tt+bb JHEP 04 (2019) 046	Differential cross section measurements Uncertainties not profiled CMS - arXiv:2008.07860, arXiv:1904.05237 arXiv:1911.03800 ATLAS - Eur. Phys. J. C 80 (2020) 528, Eur. Phys. J. C 79 (2019) 1028, Phys. Rev. D 98 (2018) 012003 Partially profiled
Rare processes, properties and search-oriented analyses Uncertainties are profiled CMS - CKM matrix elements PLB 808 (2020) 135609 and tZq Observation PRL 122 (2019) 132003 ATLAS - Top Width ATLAS-CONF-2019-038, Top mass (soft muon) ATLAS-CONF-2019-046, tZq observation JHEP 07 (2020) 124, FCNC tqgamma Phys. Lett. B 800 (2019) 135082	 CMS - EPJC 80 (2020) 370 (t-ch differential measurement) in which experimental uncertainties and background normalisations are profiled and the rest externalised. Profiling within Unfolding CMS - Phys. Lett. B 803 (2020) 135263 ATLAS - ATLAS-CONF-2019-026

Prevention of spurious pulls and constrains

- * Smoothing algorithms act on systematic histograms to make them smoother
 - Computationally faster (easier example: re-binning)
 - Applied to most of the systematic uncertainties 'a priori'
- * **Decorrelation** of NPs among the regions
 - This might either reduce or increase the systematic uncertainty

* Bootstrapping smooths systematic histograms from statistical fluctuations, generating N replicas of the event

- Correlation between nominal and systematic
- More CPU consuming
- ***** Factorization of components
 - If alternative model is discrepant with data consider re-weighting an observable before building the systematic variation
 - Top pT re-weight applied to all alternative samples

Unfolding techniques

Unfolding techniques are used in the top sector to measure differential distributions at the particle and parton level:

- Unfolded data used to test theoretical predictions
- Possible to extract physical parameters
 - Spin correlation and polarisation
 - Top-antitop charge asymmetry

Determination of the distribution F(x) of a stochastic variable x using a sample of data x_1, \dots, x_n

- Each observation *i* is characterised by a measured value *y_i* corresponding to a true value *x_i*
- Measured values y_i distorted by measurement errors
- *y* and *x* are related by the response function *R(y|x)*

$$F_{obs}(y) = \int R(y \mid x) F_{true}(x) dx$$

We measure number of data events in a bin ΔX_k of a variable histogram

$$N_k^{reco} = \sum_j R_{kj} N_j^{unf} + N_k^{bkg} \longrightarrow \left(\frac{d\sigma}{dX}\right)_j = \frac{N_j^{unf}}{L \cdot \Delta X_j}$$

Multiple normalised distributions

It is possible to perform a χ^2 test simultaneously on various normalised differential cross sections:

Correlation between bins of different unfolded distributions is under study

Statistical

Systematic

CMS spin correlation and polarisation Phys. Rev. D 100 (2019) 072002

Multiple normalised distributions

ATLAS ttbar dilepton differential Eur. Phys. J. C (2020) 80:528

- The statistical correlations between distributions were evaluated using pseudoexperiments
- Systematic uncertainties were assumed to be correlated between distributions

Improvement of ttbar modelling

ATLAS procedure for Initial State Radiation uncertainty:

- Compare nominal ttbar to alternative samples with different settings of *hdamp*, normalisation and factorisation scales and different PS tune
 - Choice based looking at variables measured at 8 TeV
- In ttbar(I+jets) measurement the NP associated to the envelope of these variations significantly constrained

Improvement of ttbar modelling

N.

Measurement of ttbar cross section in I+jets final state

- Fit on three variables of three independent signal regions
- Both fiducial and inclusive cross sections extracted from fit

 $\Delta \sigma_{\rm inc} / \sigma_{\rm inc}^{\rm pred}$

Pre-fit impact on $\sigma_{inc}/\sigma_{inc}^{pred}$

Reduction of modelling uncertainties via renormalisation of varied distributions

FIDUCIAL FIT: all distributions scaled to same fiducial acceptance

• Remaining normalisation uncertainty in C

INCLUSIVE FIT: all distributions scaled to same inclusive cross section

• Impact of modelling encoded in A

 $\sigma_{t\bar{t}} = 830 \pm 0.4(stat) \pm 36(syst) \pm 14(lumi) \ pb$

Improvement of ttbar modelling

Measurement of ttbar cross section in the dileptonic final state

• Events categorised as function of number of b-tagged and non-b-tagged jets

Extrapolation uncertainty determined by :

- 1. Fixing all NPs to post-fit value
- 2. NP under study set to ± 1
- 3. Recorded variation on A
- 4. Sum in quadrature to derive uncertainty on inclusive cross section

Uncertainties in the inclusive phase space are not fully profiled

$$\sigma_{t\bar{t}} = 803 \pm 2(stat) \pm 25(syst) \pm 20(lumi) \ pb$$

CMS ttbar(dilepton) inclusive cross-section Eur. Phys. J. C (2019) 79:368

Combining Unfolding and Profiling

Both ATLAS and CMS gave an example of Unfolding with Profiled systematic uncertainties:

- The main idea is to perform a maximum likelihood fit
- Comparing data to prediction for both spectrum unfolding and uncertainty constrains

X = TRUE DISTRIBUTION

Y = RECO DISTRIBUTION

$$\mathscr{L}(Y|X,B) = \prod_{i=1}^{n} \mathscr{P}(y_i, r_i(X,\mathcal{M}) + b_i)$$

Reco data in a bin *i* follows a Poissonian distribution with predicted value given by true distribution and migration matrix

- Does not involve an explicit matrix inversion
- Prior choice determines bias
- "automatic" handling of systematics and correlations

ATLAS charge asymmetry <u>ATLAS-CONF-2019-026</u> CMS running mass <u>Phys. Lett. B 803 (2020) 135263</u>

Combining Unfolding and Profiling

CMS dilepton differential + running mass Phys. Lett. B 803 (2020) 135263

Fully Bayesian Unfolding

Choice of the prior corresponds to applying a regularisation with strength:

Curvature prior corresponds to a generalisation of Tikhonov regularisation

Systematics are marginalised in the Bayesian inference framework:

Posterior probability integrated over NPs

$$\mathscr{L}(Y|X) = \int \mathscr{L}(Y|X,\theta) \,\mathcal{N}(\theta) \,d\theta$$
NP prior

Formalism is flexible also when it comes to combining different channels:

- Correlation of NPs handled
- Possibility to add CRs for background processes

$$\mathscr{L}(Y_1,\ldots,Y_{N_{ch}}|X) = \int \prod_{h=1}^{N_{ch}} \mathscr{L}(Y_h|X,\theta) \ \mathscr{N}(\theta) \ d\theta$$

ATLAS charge asymmetry <u>ATLAS-CONF-2019-026</u>

Charge Asymmetry with FBU

Statistical uncertainties are mostly dominating

Non-zero inclusive asymmetry observed at 4σ

