Off-shell vs on-shell modelling of top quarks in photon associated production

13th International Workshop on Top Quark Physics (TOP 2020), 14-18 September 2020 virtually hosted by IPPP Durham on Zoom

Outline

ttγ ⇒ *di-lepton channel*

Questions:

- Size of NLO QCD corrections $\Rightarrow \sigma_{t\bar{t}\gamma}, d\sigma_{t\bar{t}\gamma}/dX$
- Reduction of theoretical uncertainties $\Rightarrow t\bar{t}\gamma/t\bar{t}$
- Applicability of the NWA
 Importance of off-shell effects
- Photon emission in production & decays

What about other processes ?

- NNLO theoretical predictions only for *tt* ⇒ di-lepton channel
- Besides *tt* more exclusive final states can be accessed @ LHC

HELAC-PHEGAS *Cafarella, Papadopoulos, Worek '09*

Motivations For tty

- *ttV* cross sections much smaller than *tt(j)*
- Information on couplings $\Rightarrow \gamma, Z, H, W^+ & W^-$
- $\sigma_{tt\gamma}$ direct way to measure *top quark charge* @ LHC $\Rightarrow \sigma_{tt\gamma} \sim Q_t^2$ @ LHC
- $Q_t = +\frac{2}{3}$ with $CL \ge 5\sigma$ @ LHC \Rightarrow Indirectly from $Q_t = Q_W Q_{b-jet}$ in tt
- *Exotic physics scenarios* \Rightarrow top-like quarks with $Q_t \neq +\frac{2}{3}$

Motivations For tty

Probe the strength and the structure of tty vertex ⇒ SM + contributions from dimension-six effective operators ⇒ Constrains on anomalous couplings

$$\mathcal{L}_{t\bar{t}\gamma} = -eQ_t\bar{t}\gamma^\mu tA_\mu - e\bar{t}\frac{i\sigma^{\mu\nu}(p_t - p_{\bar{t}})_\nu}{m_t}\left(d_V^\gamma + id_A^\gamma\gamma_5\right)tA_\mu$$

Measure *cross section ratio* (also differential ratios)

Aguilar-Saavedra '09 Schulze, Soreq '16

$$\mathcal{R} = \frac{\sigma_{pp \to t\bar{t}\gamma}}{\sigma_{pp \to t\bar{t}}}$$

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

- More stable against radiative corrections
- Reduced scale dependence \Rightarrow Various uncertainties cancel in ratio
- Enhanced predictive power ⇒ Interesting to probe new physics @ LHC
- Top quark charge asymmetry, differential top quark charge asymmetries, ...
- Lepton charge asymmetry

Aguilar-Saavedra, Alvarez, Juste, Rubbo '14 Maltoni, Pagani, Tsinikos '16 Aguilar-Saavedra '18

Theoretical Predictions For tty

- NLO corrections for stable top quarks
 General idea about size of NLO corrections. Can not provide reliable description of top quark decay products and radiation pattern
 - NLO QCD
 - NLO electroweak

Duan, Ma, Zhang, Han, Guo, Wang '09 '11 Hirschi, Frederix, Frixione, Garzelli, Maltoni '11 Maltoni, Pagani, Tsinikos '15 Duan, Zhang, Wang, Song, Li '16

- For more realistic studies decays are needed
 - *NLO QCD for ttγ* + *PS* ⇒ Top decays in parton shower approximation, omitting photon emission in PS evolution & omitting tt spin correlations

Kardos, Trocsanyi '14

- NLO QCD in NWA ⇒ NLO QCD corrections to top production & decays & no QCD corrections to hadronic decays of W-bosons & photon emission of top quark and of top quark decay product & tt spin correlations @ NLO included Melnikov, Schulze, Scharf '11
- NLO QCD complete off-shell effects of top quarks ⇒ resonant & nonresonant diagrams, interferences and off-shell effects of the top quarks

NWA & Off-Shell Effects

- Complete off-shell effects
 - Off-shell top quarks are described by Breit-Wigner propagators
 - Double-, single- as well as non-resonant top-quark contributions are included
 - All interference effects consistently incorporated at the matrix element level
- NWA
 - Works in the limit $\Rightarrow \Gamma_t/m_t \to 0$

 $\Gamma_t = 1.35159 \; {
m GeV} ~~m_t = 173.2 \, {
m GeV} ~~\Gamma_t/m_t pprox 0.008$

- Incorporates only double resonant contributions
- Restricts the unstable top quarks (W gauge bosons) to *on-shell states*

NWA & Off-Shell Effects

- Feynman Diagrams 🖨 628 @ LO for gg channel versus 38 in NWA
- 8 diagrams with photon in production and 30 in decay stage

two top-quark resonances

one top-quark resonance

no top-quark resonances

- NLO ⇒ 4348 real emission & 36032 @ 1-loop for gg channel
- Most complicated ⇒ 90 heptagons & 958 hexagons

 $pp
ightarrow t\bar{t}\gamma + X @ \mathcal{O}(lpha_s^3 lpha^5)$

 $pp
ightarrow tt\gamma$

How Good Is the NWA ?

- Should be accurate for sufficiently inclusive observables
- Off-shell effects for integrated fiducial $\sigma_{tt+X} \Rightarrow at few \% level @ NLO in QCD$

•	tt (di-lepton)	Denner, Dittmaier, Kallweit, Pozzorini '11 '12 Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek '11 Frederix '14 Heinrich, Maier, Nisius, Schlenk, Winter '14 Denner, Pellen '16 (EW+QCD) Jezo, Lindert, Nason, Oleari, Pozzorini '16 (PS)
•	tt (lepton+jets)	Denner, Pellen '18
•	ttH (di-lepton)	Denner, Feger '15 Denner, Lang, Pellen, Uccirati '17 (EW+QCD)
•	ttj (di-lepton)	Bevilacqua, Hartanto, Kraus, Worek '16 '18
•	ttγ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '18 '19 '20
•	$ttZ, Z ightarrow u_l u_l$ (di-lepton)	Bevilacqua, Hartanto, Kraus, Weber, Worek '19
•	ttW [±] (di-lepton)	Bevilacqua, Bi, Hartanto, Kraus, Worek '20 Denner, Pelliccioli '20
•	ttbb (di-lepton)	Denner, Lang, Pellen '20

ttγ

Questions:

- Size of NLO QCD corrections $\Rightarrow \sigma_{t\bar{t}\gamma}, d\sigma_{t\bar{t}\gamma}/dX$
- Reduction of theoretical uncertainties $\Rightarrow t\bar{t}\gamma/t\bar{t}$
- Applicability of the NWA
 Importance of off-shell effects
- Photon emission in production & decays

tty with dynamical scale $\frac{1}{4} H_T$

$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

PDF $p_{T,b} \sigma^{\text{LO}}$ [fb] $\delta_{scale} \sigma^{\text{NLO}}$		$\sigma^{ m NLO}$ [fb]	δ_{scale}	$\delta_{ m PDF}$	$\mathcal{K} = \frac{NLO}{LO}$		
СТ	25	10.68	+3.54 (33%) -2.49 (23%)	11.19	+0.16 (1%) -0.54 (5%)	+0.32 (3%) -0.35 (3%)	1.05
	30	9.58	+3.18 (33%) -2.24 (23%)	9.93	+0.14 (1%) -0.54 (5%)	+0.28 (3%) -0.31 (3%)	1.04
	35	8.44	+2.80 (33%) -1.97 (23%)	8.69	+0.12 (1%) -0.50 (6%)	+0.25 (3%) -0.27 (3%)	1.03
	40	7.32	+2.45 (33%) -1.71 (23%)	7.50	+0.11 (1%) -0.45 (6%)	+0.22 (3%) -0.23 (3%)	1.02
MMHT	25	11.59	+4.22 (36%) -2.88 (25%)	11.29	+0.16 (1%) -0.57 (5%)	+0.24 (2%) -0.22 (2%)	0.97
	30	10.38	+3.78 (36%) -2.58 (25%)	10.02	+0.13 (1%) -0.58 (6%)	+0.22 (2%) -0.19 (2%)	0.97
	35	9.12	+3.33 (36%) -2.26 (25%)	8.77	+0.11 (1%) -0.54 (6%)	+0.19 (2%) -0.17 (2%)	0.96
	40	7.90	+2.89 (37%) -1.96 (25%)	7.57	+0.09 (1%) -0.48 (6%)	+0.16 (2%) -0.15 (2%)	0.96
NNPDF	25	10.78	+3.82 (35%) -2.62 (24%)	11.62	+0.17 (1%) -0.58 (5%)	+0.16 (1%) -0.16 (1%)	1.08
	30	9.65	+3.42 (35%) -2.34 (24%)	10.31	+0.14 (1%) -0.58 (6%)	+0.14 (1%) -0.14 (1%)	1.07
	35	8.48	+3.01 (35%) -2.05 (24%)	9.02	+0.12 (1%) -0.53 (6%)	+0.12 (1%) -0.12 (1%)	1.06
	40	7.34	+2.61 (36%) -1.78 (24%)	7.79	+0.10 (1%) -0.48 (6%)	+0.11 (1%) -0.11 (1%)	1.06

HELAC-NLO

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

Stability w.r.t. p_{T,b} cut

- NLO QCD corrections stable against *p*_{T,b} cut
- CT14 PDF uncertainties similar/smaller than difference between various PDF sets
- Similar results for $p_{T,\gamma}$ *cut*

 $H_T = p_{T, e^+} + p_{T, \mu^-} + p_{T, j_b} + p_{T, j_b} + p_T^{miss} + p_{T, \gamma}$

11

tty with dynamical scale $\frac{1}{4} H_T$

HELAC-NLO

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

- NLO Corrections up to 43%
- Theoretical uncertainties up to ± 56%

- NLO Corrections up to + 8%
- Error reduced down to ± 7%

Dynamical scale very effective in stabilizing perturbative convergence ! Provides smaller theoretical error ! 12

tty with dynamical scale $\frac{1}{4} H_T$

HELAC-NLO

Bevilacqua, Hartanto, Kraus, Weber, Worek '18

- Positive NLO corrections up to 13%
- NLO error bands within LO
- Theoretical error up to ± 8%

Not all differential K-factors are flat even with $\mu_0 = \frac{1}{4} H_T$!

tty/tt

- Fiducial integrated σ_{tty} with dynamical scale \Rightarrow (th. error of $\pm 6\%$)
- Fiducial differential $d\sigma_{tt\gamma}/dX \Rightarrow$ (th. error ± (10% 30%)
- Can we decrease theoretical error even further for *ttγ* without going to NNLO ?
- Answer is yes !

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{NLO}}(\mu_1)}{\sigma_{t\bar{t}}^{\text{NLO}}(\mu_2)} \qquad \qquad \mathcal{R}_X = \left(\frac{d\sigma_{t\bar{t}\gamma}^{\text{NLO}}(\mu_1)}{dX}\right) \left(\frac{d\sigma_{t\bar{t}}^{\text{NLO}}(\mu_2)}{dX}\right)^{-1}$$

- $\sigma_{tty} / \sigma_{tt}$ we have $\pm (1\% 3\%) \Rightarrow$ Differential cross section ratios $\pm (1\% 6\%)$
- High precision comparable to NNLO QCD results for top quark physics !
- Processes need to be correlated ⇒ top quark pair production excellent candidate
- Similar dynamical scale choice need to be implemented for $\mu_1 \otimes \mu_2$!

tty & tt

HELAC-NLO

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

ttbb & ttjj

$t\bar{t}b\bar{b} \& t\bar{t}jj @ LHC_{8TeV}$

- Different jet kinematics makes the *ttbb* and *ttjj* processes uncorrelated in several observables
- Scale uncertainty is not significantly reduced when taking ratio of cross sections

HELAC-NLO

Bevilacqua, Worek '14

tty/tt

$$\mathcal{R} = \frac{\sigma_{t\bar{t}\gamma}^{\text{NLO}}\left(\mu_{1}\right)}{\sigma_{t\bar{t}}^{\text{NLO}}\left(\mu_{2}\right)}$$

HELAC-NLO

$$\mathcal{R}(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}) = (4.56 \pm 0.25) \cdot 10^{-3} (5\%),$$

$$\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \text{ GeV}) = (4.62 \pm 0.06) \cdot 10^{-3} (1\%),$$

$$\mathcal{R}(\mu_0 = m_t/2, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}) = (1.89 \pm 0.16) \cdot 10^{-3} (8\%),$$

$$\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \text{ GeV}) = (1.93 \pm 0.06) \cdot 10^{-3} (3\%).$$

- Uncertainties stable against $p_{T,\gamma}$ cut $\Rightarrow 25$ GeV increased to 50 GeV
- Our best NLO QCD predictions with dynamical scale choice:

 $\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 25 \,\text{GeV}) = (4.62 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3}$ $\mathcal{R}(\mu_0 = H_T/4, \text{CT14}, p_{T,\gamma} > 50 \,\text{GeV}) = (1.93 \pm 0.06 \,[\text{scales}] \pm 0.02 \,[\text{PDFs}]) \cdot 10^{-3},$

Differential Cross Section Ratio

Bevilacqua, Hartanto, Kraus, Weber, Worek '19

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$

HELAC-NLO

Theoretical uncertainties:

± (1% – 4%) dynamical scale

± (20% – 25%) fixed scale

- Should be compared to uncertainties for absolute differential cross section
 up to ± 10% *for* μ₀ = ¼ H_T & *up to* ± 50% *for* μ₀ = ½ m_t
- When different scales are used in numerator and denominator *up to* ± 60%

Fiducial Cross Section for tty

Т

HELAC-NLO

$e^{ op} u_e \mu^- ar{ u}_\mu bb$	$\gamma @ LHC$	13TeV
Modelling Approach	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]
full off-shell ($\mu_0 = H_T/4$)	$7.32^{+2.45(33\%)}_{-1.71(23\%)}$	$7.50^{+0.11(1\%)}_{-0.45(6\%)}$
NWA $(\mu_0=m_t/2)$ NWA $(\mu_0=H_T/4)$	$8.08^{+2.84(35\%)}_{-1.96(24\%)}$ $7.18^{+2.39(33\%)}_{-1.68(23\%)}$	$7.28_{-0.03(0.4\%)}^{-0.99(13\%)}$ $7.33_{-0.24(3.3\%)}^{-0.43(5.9\%)}$
NWA _{γ-prod} ($\mu_0 = m_t/2$) NWA	$4.52^{+1.63}_{-1.11}_{(24\%)}^{(36\%)}$ $3.85^{+1.29}_{(33\%)}^{(36\%)}$	$4.13^{-0.53(13\%)}_{-0.05(1.2\%)}$ $4.15^{-0.12(2.3\%)}$
NWA $_{\gamma-{ m decay}}~(\mu_0=m_t/2)$	$3.56^{+1.20(34\%)}_{-0.85(24\%)}$	$3.15_{+0.03(0.9\%)}^{-0.21(5.1\%)}$
NWA _{γ-decay} ($\mu_0 = H_T/4$)	$3.33^{+1.10(33\%)}_{-0.77(23\%)}$	$3.18^{-0.31}_{-0.03} \stackrel{(9.7\%)}{_{(0.9\%)}}$
$\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=m_t/2)$ $\mathrm{NWA}_\mathrm{LOdecay}~(\mu_0=H_T/4)$		$4.85^{+0.26}_{-0.48} \substack{(9.9\%)\\ (9.5\%)}{4.63^{+0.44}_{-0.52} \substack{(11\%)}{(11\%)}}$

Various approaches for the modelling of top quark production & decays

- Off-shell effects 3%
- Consistent with $\Gamma_t / m_t \approx 0.8\%$
- 57% $\Rightarrow \gamma$ emitted in production
- **43%** \Rightarrow γ emitted in decay stage
- For $p_{T,b} > 25 \text{ GeV}$ it is 50%-50%
- NLO QCD corrections to top quark decays are negative and not small
- 17% $\Rightarrow \mu_0 = \frac{1}{2} m_t$
- 12% $\Rightarrow \mu_0 = \frac{1}{4} H_T$
- Theoretical uncertainties not underestimated for the full NWA

How Good Is the NWA?

HELAC-NLO

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

- *Dimensionful* observables are sensitive to non-factorizable top quark corrections
 Tens of per cent in specific phase-space regions
- *Kinematical edges* & *high p*_T *regions*

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

How Good Is the NWA ?

HELAC-NLO

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

- *Dimensionful* observables are sensitive to non-factorizable top quark corrections
 Tens of per cent in specific phase-space regions
- Kinematical edges & high p_T regions

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

Various Phase-space Regions

$e^+ u_e \mu^- ar{ u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

■ 3 different resonance histories 🖙 Resolved jet at NLO gives 9 in total

(i)	$t = W^+ (ightarrow e^+ u_e) b$	and	$ar{t} = W^- (ightarrow \mu^- ar{ u}_\mu) ar{b} ,$
(ii)	$t = W^+(ightarrow e^+ u_e) b\gamma$	and	$ar{t} = W^- (ightarrow \mu^- ar{ u}_\mu) ar{b} ,$
(iii)	$t = W^+ (\to e^+ \nu_e) b$	and	$ar{t} = W^- (o \mu^- ar{ u}_\mu) ar{b} \gamma$

Compute for each history Q and pick the one that minimises the Q value

 $Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$

- Double-resonant (DR): $|M(t) m_t| < n \Gamma_t$, and $|M(\bar{t}) m_t| < n \Gamma_t$
- Two single-resonant regions (SR):

$$|M(t) - m_t| < n \Gamma_t$$
, and $|M(t) - m_t| > n \Gamma_t$

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

• Non-resonant region (NR):

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$ ²²

Various Phase-space Regions **HELAC-NLO** $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma @ LHC_{13TeV}$ 10^{1} full ---- NWA full ---- NWA 10^{1} DR ---- SR ---- DR ---- SR 10^{0} NR ----- NR $d\sigma/M(bl^+)_{min}$ [fb/GeV] $d\sigma/p_T(b_{avg})$ [fb/GeV] 10^{-1} 10^{-1} 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-5} 10^{-5} 10^{-7} 10^{-6} Ratio to full Ratio to full 0.750.750.500.500.250.250 0 300 2080 100120140 $160 \ 180$ 200100 2000 4060 0 400500600 $M(bl^+)_{min}$ $p_T(b_{avg})$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- Off-shell effects:
 - High p_T region of various dimensionful observables
 - Vicinity of kinematical edges
 - Contribute up to **50% 60%**

Various Phase-space Regions

- Observables sensitive to top quark off-shell effects
 Substantial contributions
 from single top quark process
- Dimensionless observables rather insensitive to top quark off-shell effects

γ in Production & Decays ⇒ Differential Level

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

HELAC-NLO

- Diverse picture
- Photon emission in decays can be reduced
 - $H_T > 400 \ GeV$
 - $p_T(\gamma) > 50 \ GeV$

γ in Production & Decays ⇒ Differential Level

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

HELAC-NLO

- Diverse picture
- Photon emission in decays can be reduced
 - $H_T > 400 \; GeV$ •
 - $p_T(\gamma) > 50 \ GeV$ •

5

Summary

- Proper modeling of top quark production & decay essential already now in presence of inclusive cuts:
- NLO QCD corrections to $tt\gamma @ \mathcal{O}(\alpha_s^3 \alpha^5)$
 - At least full NWA or better yet complete off-shell effects for top quarks
 - 1. Corrections to production & decays \Rightarrow NLO *tt* spin correlations
 - 2. Possibility of using kinematic-dependent $\mu_R \mathcal{E} \mu_F$ scales
 - 3. Complete off-shell effects for top quarks

• Even more important for:

- Exclusive cuts & High luminosity measurements
- New Physics searches & Might impact exclusion limits
- SM parameter extraction
- Top quarks play important role in virtually every LHC analysis ⇒ *SM & BSM*
- Lots of data, sophisticated analyses, precision measurements
 ⇒ Should be compared to state-of-the-art theoretical predictions
- Our full off-shell *ttγ* results
 - Stored \Rightarrow Ntuples Files \Rightarrow Les Houches & ROOT Files
 - Used by ATLAS Collaboration ⇒ <u>JHEP 09 (2020) 049</u>

Backup Slides

 Cuts on the transverse momenta and the rapidity of two recombined b-jets, which we assume to be always tagged

$p_T(b) > 40 \text{ GeV},$	y(b) <2.5,	$\Delta R(bb) > 0.4$
----------------------------	------------	----------------------

- Isolated hard photon $p_T(\gamma) > 25 \text{ GeV}$ $|y(\gamma)| < 2.5$
- Basic selection cuts for charged leptons to ensure that they are observed inside the detector and well separated from each other

$p_T(\ell) > 30 \mathrm{GeV},$	$\Delta R(\ell\ell) > 0.4,$	$ y(\ell) < 2.5$
--------------------------------	-----------------------------	-------------------

• Charged leptons are well separated from the isolated photon and from b-jets

$\Delta R(\ell b) > 0.4,$	$\Delta R(\ell\gamma) > 0.4,$	$\Delta R(b\gamma) > 0.4$
---------------------------	-------------------------------	---------------------------

Various Phase-space Regions

 $e^+
u_e \mu^- ar{
u}_\mu b ar{b} \gamma \ @ \ \mathrm{LHC}_{13\mathrm{TeV}}$

Bevilacqua, Hartanto, Kraus, Weber, Worek '20

- $n = 15 \rightarrow$ Boundaries outside which effects of Γ_t in BW propagator < 1%
- DR region is set to for $m_t = 173.2 \ GeV$

$M(t) \in (152.9, 193.5)$ GeV	$M(\bar{t}) \in (152.9, 193.5) \text{ GeV}$
-------------------------------	---

Contributions at the integrated cross section level for these 3 regions

$$\sigma_{\rm DR}^{\rm NLO} = 6.57~{\rm fb}\,, \qquad \qquad \sigma_{\rm SR}^{\rm NLO} = 0.91~{\rm fb}\,, \qquad \qquad \sigma_{\rm NR}^{\rm NLO} = 0.02~{\rm fb}$$

- DR contribution to full $\sigma_{tty} \rightarrow 88\% \rightarrow$ SR comprises 12% \rightarrow NR only 0.5%
- Should we instead use *n* = 5

$$\sigma_{\rm DR}^{\rm NLO} = 4.82$$
 fb, $\sigma_{\rm SR}^{\rm NLO} = 2.50$ fb and $\sigma_{\rm NR}^{\rm NLO} = 0.18$ fb.

DR = 64%, SR = 33%, NR = 3%

HELAC-NLO

Ossola, Papadopoulos, Pittau '08

Output:

- theoretical predictions are stored in the form of the Ntuples Files and modified Les Houches & ROOT Files
- kinematical cuts can be changed
- new observables can be defined
 - renormalization or factorization scales and PDF sets can be changed

Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre '14

Combined tty + tWy production

32

	$p_{\mathrm{T}}(\gamma)$		$ \eta(\gamma) $		$\Delta R(\gamma, \ell)_{\min}$		$\Delta \phi(\ell,\ell)$		$ \Delta \eta(\ell,\ell) $	
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	<0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	<0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59
									· · · · · · · · · · · · · · · · · · ·	