

TOP2020 – IPPP Durham

15th September 2020

Top quark production with heavy-flavour jets

Sébastien Wertz, for the ATLAS and CMS collaborations

tt + heavy flavour jets

- ttbb (and to a lesser extent ttcc) production @LHC: unique modelling challenges!
- Currenly different approaches:
 - Inclusive tt ME (NLO) + PS, 5FS
 - (Powheg, MG5_aMC@NLO) x (Pythia, Herwig)
 - Multi-leg merged $t\bar{t}$ + jets ME + PS, 5FS
 - MG5_aMC@NLO + Pythia, Sherpa
 - $t\overline{t}b\overline{b}$ ME (NLO) + PS, 4FS
 - Powheg+OL+Pythia, Sherpa+OL

(Varying) sensitivity to:

- Scale choice ($t\bar{t} \leftrightarrow b\bar{b}$ gap)
- Parton shower modelling
- NLO+PS matching

- Spread in the predictions
 - Large intrinsic uncertainties

The future? [F. Siegert, ZPW20]

- Consistent merging of 5FS tt+jets and 4FS ttbb
- Better tuning of scales

ME = Matrix Element, PS = Parton Shower

- 5FS = 5-flavour scheme, massless b+c quarks (inside PDFs)
- 4FS = 4-flavour scheme, massive b quarks, massless c quarks

ATLAS: evidence for $t\bar{t}t\bar{t}$ (µ=2.0^{+0.8}_{-0.6}) 2007.14858

50% uncertainty on irreducible tt(V/H) + b jets background

See also CMS: Eur. Phys. J. C 80 (2020) 75, JHEP 11 (2019) 082

Large, additional uncertainties on tt(X) + b jets (taken from measurements)

15/09/20 - TOP2020 - Sébastien Wertz (UCLouvain)

ttH(bb)

Four tops

Stress-test for perturbative QCD predictions \rightarrow intrinsic value!

2

Background for other high-interest processes, in particular:

tt + heavy flavour jets: why the fuss? $\mathcal{F}_{\mathcal{A}}$

ttH (renorm./fact. scales)

tt+bb cross section (50%) (2017)

tt+bb cross section (50%) (2016)

Observation of ttH, evidence for ttH(bb)

Phys. Lett. B 784 (2018) 173 Phys.Rev.D 97 (2018) 072016

Phys. Rev. Lett. 120 (2018) 231801

 $\hat{\alpha} = 1.15^{\dagger}$

PAS-HIG-18-030

CMS Preliminary

ttbb background modelling = leading source of uncertainty

Flavour tagging

<u>Caveat</u>: results shown today not based on most recent b/c taggers!

- Mandatory tools to disentangle tt+HF from overwhelming tt+light jets!
- B/D hadrons "long" lifetime, large mass \rightarrow displaced tracks, secondary vertices in jets
 - Rely on exceptional performance of pixel detectors

<u>B tagging:</u>

- ATLAS: BDT ("MV2c10")
 - CMS: NN ("CSVv2")

<u>C tagging:</u>

- c jets "in between" b and light jets
- CMS: DNN ("DeepCSV")
 → CvsL and CvsB discriminators

State of the art for full-Run 2 analyses: RNN(+CNN)-based taggers ("deepJet", "DL1r")

Flavour tagging calibration

- <u>Correct</u> algorithm performance in the simulation
- Quantify uncertainty in the performance
- All tt+HF measurements rely on correcting <u>shape</u> of discriminators
 - 5 bins (ATLAS), pseudo-continuous (CMS)

<u>Caveat</u>: results shown today not based on most recent b/c taggers!

	ATLAS	<u>CMS</u>	Limiting factors	
<u>Heavy</u> <u>flavour</u>	 tt events (2I) Δ≈2-10% Tag and probe Δ≈1-5% 		 tt modelling (light radiation) 	
	 c mistag in tt (1l) ∆≈6-22% 	No dedicated c mistag scale factors	 Soft physics (fragmentation, gluon splitting,) 	
	[Iterative procedure –		
<u>Light</u> <u>flavour</u>	 Z+jets events 		 HF contamination 	
	 "Flipped" taggers 	"anti-tag" and probe	 Flipped tagger extrapolation 	
	∆≈15-75%	∆≈10-20%	Tracking modelling	
<u>Uncertainty</u> model provided	 Eigenvector decomposition (>100) 	 Simplified: 8 + 26 (JES) 		

ttbb cross section: all-jet final state Phys. Lett. B 803 (2020) 135285

- Fully-hadronic channel: 8 jets, of which 4 b jets
 - \rightarrow largest branching fraction (45%) & fully reconstructible final state
- Select events with ≥ 8 jets, ≥ 2 b-tagged jets
- Suffers from:
 - Combinatorial self-background

"Permutation" BDT:

- Trained to identify jets from tt decays
- ~60% correct (if all jets reconstructed)
- Keep permutation with highest score

2016 data, 36 fb-1

ttbb cross section: all-jet final state Phys. Lett. B 803 (2020) 135285

- Fully-hadronic channel: 8 jets, of which 4 b jets
 - \rightarrow largest branching fraction (45%) & fully reconstructible final state
- Select events with ≥ 8 jets, ≥ 2 b-tagged jets
- Suffers from:
 - QCD multijet background

Quark-gluon likelihood ratio (QGLR):

- Based on quark \leftrightarrow gluon jet discr.
- QCD multijet: more gluon jets

QCD rejection BDT:

- Uses Classification Without Labels (CWoLa) 1708.02949
- Trained using data with =7 jets

2016 data, 36 fb-1

Phys. Lett. B 803 (2020) 135285

- Extract signal using b tagging (CSVv2) scores of two <u>extra</u> jets with highest score:
- Estimate QCD contribution: "bin-wise ABCD"
- QGLR and BDT uncorrelated
- For each bin: N^{SR} = N^{CR3} N^{CR1}/N^{CR2}

Phys. Lett. B 803 (2020) 135285

- Cross section reported in fiducial (two definitions) and total phase space
- ≈ 30% precision, dominated by systematics
 - Quark-gluon likelihood, b tagging calibrations
 - Signal + background modelling: μ_R/μ_F , PS ISR/FSR scales ($t\bar{t}$ Powheg+P8)
- Under-prediction of all generators by factor ~1.5

ttbb cross section: leptonic final states

CSVv2

12-13% precision on \sigma(t\bar{t}b\bar{b}) (1L/2L)

- Good agreement for $\sigma(t\bar{t}jj)$, slight underprediction for $\sigma(t\bar{t}b\bar{b})$
- Cross sections reported in visible phase space (VPS), and unfolded to full phase space
- Note: different phase-space definitions (30 vs. 20 GeV b jet p_{τ} threshold) in two channels
- Dominant uncertainties: b tagging, tt modelling (tt Powheg+P8)

ttbb cross section: CMS summary

CMS

- Consistent trend of under-prediction for $\sigma(t\bar{t}b\bar{b})$
- Just within uncertainties (exp + th)

ttbb cross sections: leptonic final states JHEP 04 (2019) 046

- I+jets and dilepton (eµ) channels
- Fit normalization of $t\bar{t}$ +light, $t\bar{t}$ +c, $t\bar{t}$ +b using 3rd (vs. 4th) b tagging discriminator values
 - Fiducial cross sections in ≥3b and ≥4b phase spaces
 - " "Agnostic" wrt extra b origin subtract $t\bar{t}H(b\bar{b})$, $t\bar{t}Z(b\bar{b})$ from measured values
 - Comparison with several generators \rightarrow overall under-prediction of $\sigma(t\bar{t}+b(b))$

2015-6 data, 36 fb⁻¹

ttbb differential cross sections

- Unfold several normalized differential distributions to particle level
 - Only in \geq 3b volume for eµ channel lower statistics
 - Kinematics of p_{τ} -ordered b jets \rightarrow subleading jets = proxy for add. b jets

2015-6 data, 36 fb-1

ttbb differential cross sections JHEP 04 (2019) 046

2015-6 data, 36 fb-1

- Unfold several normalized differential distributions to particle level
 - bb pair kinematics of two closest (in ΔR) b jets \rightarrow proxy for add. b jets (gluon splitting)

ttbb differential cross sections JHEP 04 (2019) 046

- Unfold several normalized differential distributions to particle level
- 2015-6 data, 36 fb-1 bb pair kinematics of two leading b jets \rightarrow proxy for b jets from top decays

All results available as Rivet routines!

- Dominant uncertainties: signal modelling, b tagging, JES
- Comparisons with generators accounting for bin-to-bin correlations
- Overall **good agreement** with generators
 - Some discrepancies with PowHel 5FS ttbb, MG5_aMC@NLO FxFx
- Sizable statistical uncertainties in some phase space regions

Rely on DeepCSV: c jet taggers

- Measurement: template fit of $\sigma(ttLF), \sigma(ttcc), \sigma(ttbb)$
- Also report in terms of $R_c = \sigma(t\bar{t}c\bar{c})/\sigma(t\bar{t}LF), R_b = \sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}LF)$

First simultaneous measurement of ttLF, ttcc, ttbb cross sections

TOP-20-00

tīcc

2017 data, 41 fb⁻¹

41.5 fb⁻¹ (13 TeV)

tīcL

ttcc cross section: a first!

- Measurement precision: σ(ttcc): 15% (stat), 13% (syst)
 R_c: 15% (stat), 11% (syst)
- Both $\sigma(t\bar{t}c\bar{c})$ and $\sigma(t\bar{t}LF)$ slightly overpredicted \rightarrow good agreement in R_c
- R_b slightly underpredicted (consistent with other results)
- Dominant uncertainties:
 - tt modelling
 - c tagging calibration
 - Jet energy scale

Many more details at Seth's talk!

TOP-20-00

≈ 20%

2017 data, 41 fb-1

15/09/20 - TOP2020 - Sébastien Wertz (UCLouvain)

Conclusions

Comprehensive results on $t\bar{t}$ + heavy-flavour jets from ATLAS and CMS

- Under-prediction of $\sigma(t\bar{t}+b(b))$ but reasonable description of differential spectra
- First-ever direct measurement of ttcc !

Iterative feedback loop:

Improvements in modelling

More precise + detailed measurements

Improved precision in $t\bar{t}H(b\bar{b})$ and four tops \triangleleft

+ future differential $t\bar{t}$ +HF measurements will profit from

- Increased statistics (full Run 2)
- Increased flavour-tagging performances
- More advanced FT calibration techniques
 - \rightarrow Stay tuned!

Thank you!

Back-up

Flavour tagging: SFs and uncertainties

Light mistag:

c mistag:

b tag:

ATLAS-CONF-2018-006

ATLAS-CONF-2018-001

Flavour tagging: SFs and uncertainties

^{15/09/20 -} TOP2020 - Sébastien Wertz (UCLouvain)

Jet p_ [GeV]

Jet p_ [GeV]

Phys. Lett. B 803 (2020) 135285

Cross section measured for three phase spaces:

Fiducial, Parton Independent (PI): Fiducial, Parton Based (PB):

- ≥ 8 jets with pT > 20 Gev, of which ≥ 6 with pT > 30 GeV
- ≥ 4 b jets

≥ 8 jets with pT > 20 Gev, of which ≥ 6 with pT > 30 GeV

≥ 4 b jets, of which ≥ 2 not coming from top decays <u>Total</u>:

≥ 2 b jets with pT > 20 GeV, not coming from top decays

- Event selection:
 - ≥ 8 jets with pT > 30 Gev, of which ≥ 6 with pT > 40 GeV
 - ≥ 2 b-tagged jets
 - HT > 500 GeV
 - P(Chi2) < 1e-6 $\chi^2 = (M(j_1, j_3, j_4) m_t)^2 / \sigma_t^2 + (M(j_3, j_4) m_W)^2 / \sigma_W^2 + (M(j_2, j_5, j_6) m_t)^2 / \sigma_t^2 + (M(j_5, j_6) m_W)^2 / \sigma_W^2$
- QGLR: $L(4, 0)/(L(4, 0) + L(0, 4)) \leftrightarrow$ on average 4 quark jets in tt events

$$L(N_{q}, N_{g}) = \sum_{\text{perm}} \left(\prod_{k=i_{1}}^{i_{N_{q}}} \prod_{k=i_{N_{q}+1}}^{i_{N_{q}+N_{g}}} f_{q}(\zeta_{k}) f_{g}(\zeta_{m}) \right)$$

more

Phys. Lett. B 803 (2020) 135285

- 1708.02949 CWoLa method:
 - 1 signal, 1 background
 - 2 regions with different signal purity
 - Treat 2 regions as "signal" and "background" in training
 - Classifier converges to discriminator for actual signal and background
 - Condition: region definition uncorrelated with input variables
 - Here: signal = tt+jets, background = QCD

8 jets or Signal region Region 2: Region 1 7 jets QGLR < 0.95 **QGLR > 0.95** 20% tt + jets 10% tt + jets Classifier

Phys. Lett. B 803 (2020) 135285

Source	Fiducial, parton-independent (%)	Fiducial, <u>parton</u> -based (%)
Simulated sample size	+15 -11	+15 -11
Quark-gluon likelihood	+13 -8	+13 -8
b tagging of b quark	± 10	± 10
JES and JER	+5.1 -5.2	$+5.0 \\ -5.4$
Integrated luminosity	+2.8 -2.2	+2.4 -2.2
Trigger efficiency	+2.6 -2.1	+2.5 -2.2
Pileup	+2.3 -2.0	+2.2 -1.9
$\mu_{ extsf{R}}$ and $\mu_{ extsf{F}}$ scales	+13 -9	+13 -9
Parton shower scale	$^{+11}_{-8}$	$^{+11}_{-8}$
UE tune	+9.0 -5.3	+9.0 -5.2
Colour reconnection	±7.2	±7.1
Shower matching (h_{damp})	+4.3 -2.8	+3.8 -2.7
ttcc normalization	$+3.2 \\ -4.4$	+2.9 -4.5
Modelling of $p_{\rm T}$ of top quark	± 2.5	± 2.4
PDFs	+2.2 -2.0	+2.2 -2.0
Total	+28 -23	+28 -23

ttbb cross section: leptonic final states JHEP 07 (2020) 125

2016 data, 36 fb-1

Source	$R_{t\bar{t}b\bar{b}/t\bar{t}ii}^{VPS}$ [%]		$\sigma_{t\bar{t}ii}^{VPS}$ [%]	
Source	Dilepton	Lepton+jets	Dilepton	Lepton+jets
	Lepton unc	ertainties		
Trigger	< 0.1	0.2	1.0	0.5
Lepton identification	0.6	0.2	1.1	1.3
Lepton energy scale		< 0.1	_	0.1
	Jet uncer	tainties		
Jet energy resolution (JER)	0.4	0.3	0.3	0.7
Jet energy scale (JES)	1.5	1.2	2.9	3.6
ł	tagging un	certainties		
c-flavor b tag (lin.)	2.2	2.0	1.0	0.3
c-flavor b tag (quad.)	0.7	1.2	0.3	0.2
Heavy-flavor b tag	4.0	0.1	0.5	0.9
Heavy-flavor b tag (lin.)	0.9	0.4	1.5	0.5
Heavy-flavor b tag (quad.)	2.0	0.3	1.5	0.8
Light-flavor b tag	4.9	0.9	5.5	4.9
Light-flavor b tag (lin.)	0.1	0.2	0.3	1.1
Light-flavor b tag (quad.)	0.7	0.7	0.1	1.4
Т	heoretical u	ncertainties		
Initial-state radiation (ISR)	1.0	2.2	2.5	1.2
Final-state radiation (FSR)	0.8	0.7	2.5	5.9
ME-PS matching	0.5	< 0.1	1.8	1.9
Underlying event tune (UE)	1.5	1.5	0.4	1.4
$\mu_{\rm F}/\mu_{\rm R}$ scales (ME)	0.1	0.4	0.1	1.4
$top-p_T$	0.2	0.4	1.6	0.3
Ratio R ^{MC} _{tībi/tībb}	1.4	0.2	1.3	0.7
	Other unce	ertainties		
Pileup	0.7	0.2	1.3	0.1
Backgrounds	0.3	2.0	0.7	1.2
Simulated sample size	1.5	2.8	0.1	2.2
Luminosity	0.2	0.5	2.6	3.1
Total systematic	8.0	5.5	8.8	10.0
Statistical	58	56	0.9	0.6

ttbb cross section: leptonic final states JHEP 07 (2020) 125

2016 data, 36 fb-1

CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) Full phase space (FPS) Full phase space (FPS) p____ > 30 GeV $p_{\tau}^{jet} > 20 \text{ GeV}$ Dilepton Lepton+jets Measurement Measurement Stat. Total Stat. Total POWHEG + POWHEG + -**PYTHIA8** PYTHIA8 MG_aMC@NLO + -MG aMC@NLO + PYTHIA8 5FS [FxFx] PYTHIA8 5FS [FxFx] --POWHEG + POWHEG + HERWIG++ 111111 HERWIG++ 0.01 0.015 0.02 100 120 140 160 180 200 1 1.5 2 2.5 3 3.5 4 150 200 250 300 350 0.01 0.02 0.03 2 3 4 5 6 R^{FPS}ttbb/ttjj $\sigma_{t\bar{t}b\bar{b}}^{FPS}$ [pb] R^{FPS}ttbb/ttjj $\sigma_{t\bar{t}jj}^{FPS}$ [pb] $\sigma_{t\bar{t}jj}^{FPS}$ [pb] CMS (2015) $\sigma^{\text{FPS}}_{t\,\overline{t}\,b\overline{b}}\,[\text{pb}]$

Lepton+jets

15/09/20 - TOP2020 - Sébastien Wertz (UCLouvain)

Dilepton

ttbb differential cross sections

- Iterative unfolding, 4 iterations
- Statistical uncertainties: Unfold 10 000 replicas, Poisson-fluctuated data event weights
- Systematic uncertainties:
 - Experimental: in replicas, smear data event weights according to MC uncertainty
 - Modelling: unfold distributions of alternative models using corrections obtained with nominal model, take relative differences between unfolded alternative and true alernative

Source	Fiducial cross-section phase space			
	$e\mu$		lepton + jets	
	$\geq 3b$	$\geq 4b$	$\geq 5j, \geq 3b$	$\geq 6j, \geq 4b$
	unc. [%]	unc. [%]	unc. [%]	unc. [%]
Data statistics	2.7	9.0	1.7	3.0
Luminosity	2.1	2.1	2.3	2.3
Jet	2.6	4.3	3.6	7.2
b-tagging	4.5	5.2	17	8.6
Lepton	0.9	0.8	0.8	0.9
Pile-up	2.1	3.5	1.6	1.3
$t\bar{t}c$ fit variation	5.9	11	_	
Non- $t\bar{t}$ bkg	0.8	2.0	1.7	1.8
Detector+background total syst.	8.5	14	18	12
Parton shower	9.0	6.5	12	6.3
Generator	0.2	18	16	8.7
ISR/FSR	4.0	3.9	6.2	2.9
PDF	0.6	0.4	0.3	0.1
$t\bar{t}V/t\bar{t}H$	0.7	1.4	2.2	0.3
MC sample statistics	1.8	5.3	1.2	4.3
$t\bar{t}$ modelling total syst.	10	20	21	12
Total syst.	13	24	28	17
Total	13	26	28	17

ttcc cross section

- 2D shape calibration of c-taggers CvsB and CvsL
- Permutation neural network \rightarrow identify additional jets
 - 2 additional c (b) jets found in 50% (30%) of cases
- Multi-class neural network \rightarrow disentangle ttLF, ttcc, ttbb
 - 6 inputs: 2x CvsL+CsvB scores, ΔR of 2 additional jets, permutation NN
 - Outputs P(ttLF), P(ttcc), P(ttbb)

 $\rightarrow \text{ measurement: 2D template fit of } \Delta_b^c = \frac{P(t\bar{t}c\bar{c})}{P(t\bar{t}c\bar{c}) + P(t\bar{t}b\bar{b})}, \qquad \Delta_L^c = \frac{P(t\bar{t}c\bar{c})}{P(t\bar{t}c\bar{c}) + P(t\bar{t}LF)}$

2017 data, 41 fb⁻¹

TOP-20-00

15/09/20 - TOP2020 - Sébastien Wertz (UCLouvain)