Quantum Information and Entanglement with Top Quarks at the LHC TOP 2020

Based on: 2003.02280

Y. Afik, J. R. M. De Nova

16.09 .2020

Motivation

- The Standard Model is a Quantum Field Theory: Special Relativity and Quantum Mechanics.
- Fundamental properties of Quantum Mechanics can be tested via the Standard Model.
- Entanglement is one of the most genuine features of Quantum Mechanics.
- First study of entanglement between a pair of quarks.
- Applying quantum tomography, which is a
 genuine Quantum Information technique.
- Quantum Information \rightarrow High Energy physics.

Top-Quark

- General:
(-) Hadronisation: $\sim 10^{-23} \mathrm{~s}$.
(- Spin-decorrelation: $\sim 10^{-21}$ s.
- Top quark:
- Lifetime: $\sim 10^{-25}$ s.
- Spin information \rightarrow decay products.
- Spin-correlations between a pair of top-quarks can be measured.

- Considering leptonic decays.

Spin-Correlations between Top-Quark Pairs

- Studied extensively theoreticaly.
- Measured by the D0, CDF, ATLAS and CMS collaborations.
- No link between spin-correlations and quantum entanglement so far.
- Note! Spin-Correlations \neq Quantum Entanglement! However, Quantum Entanglement \subset Spin-Correlations.

LO Analytical Calculation

- Analytical calculation at LO.

Entanglement Criterion

- Concurrence $C[\rho]$: Quantitative measurement of entanglement.
- $0 \leq C[\rho] \leq 1, C[\rho] \neq 0$ iff the state is entangled.
- Here, $C[\rho]=\max (\Delta, 0) / 2$. Entanglement equivalent to $\Delta>0$.
- $D=\frac{\operatorname{tr}[\mathrm{C}]}{3}=-\frac{1+\Delta}{3}$ provides an experimental entanglement marker.

Measurable Entanglement Marker

- Plots are shown with integration only for $\left[2 m_{t}, M_{t \bar{t}}\right]$.
- In particular:
$\frac{1}{\sigma} \frac{d \sigma}{d \cos \varphi}=\frac{1}{2}(1-D \cos \varphi)$ where φ is the angle between the lepton directions in each one of the parent top and antitop rest frames.
- The condition $\Delta>0$ translates into $D<-1 / 3$.

Figure: Up: concurrence; bottom: Statistical deviation from the null hypothesis ($D=-1 / 3$).

Quantum Tomography

- Quantum
tomography=Reconstruction of the quantum state of the system.
- Only need to measure 4 parameters (transverse and longitudinal spin correlations and the longitudinal polarizations).
- Test theoretical predictions for
 the $t \bar{t}$ quantum state.

Summary

- First study of entanglement between quarks.
- Quantum Information study in a relativistic system.
- Although the calculation is analytical at leading order, the conclusion still holds at higher orders.
- Quantum tomography: new platform to test new theories and new physics effects.
- Interdisciplinary measurement: propagate Quantum Information theory into High Energy physics.

Summary

- First study of entanglement between quarks.
- Quantum Information study in a relativistic system.
- Although the calculation is analytical at leading order, the conclusion still holds at higher orders.
- Quantum tomography: new platform to test new theories and new physics effects.
- Interdisciplinary measurement: propagate Quantum Information theory into High Energy physics.
- Can be detected at the LHC with currently recorded data!

Thank You

THANK
 Y©U!

Backup Slides

Backup

NLO Corrections

- LO: analytical calculation.
- NLO: numerical calculation by using Monte Carlo simulation.
- MadGraph and MadSpin are used.
- Good agreement is observed.

Figure: The value of D within the mass window $\left[2 m_{t}, M_{t \bar{t}}\right.$]. The horizontal line represents the critical value $D=-1 / 3$.

Local Realism

- Locality: physical influences do not propagate faster than light.
- Realism: physical properties are defined before, and independent of observation.
- Both of the assumptions (together, not separately) are in tension with Quantum Mechanics.

Top-Quark Pair Spin Density Matrix

- General form:

$$
\rho=\frac{I_{4}+\sum_{i}\left(B_{i}^{+} \sigma^{i}+B_{i}^{-} \bar{\sigma}^{i}\right)+\sum_{i, j} C_{i j} \sigma^{i} \bar{\sigma}^{j}}{4}
$$

- $\sigma^{i} / 2, \bar{\sigma}^{i} / 2$ - spin operators of the top, antitop.
- B_{i}^{+}, B_{i}^{-}characterize the spin polarizations, $B_{i}^{+}=\left\langle\sigma^{i}\right\rangle, B_{i}^{-}=\left\langle\bar{\sigma}^{i}\right\rangle$.
- At LO $B_{i}^{ \pm}=0$.
- $C_{i j}$ the $t \bar{t}$ spin correlations, $C_{i j}=\left\langle\sigma^{i} \bar{\sigma}^{j}\right\rangle$.

What is Quantum Entanglement?

- Quantum state of one particle cannot be described independently from another particle.
- \Rightarrow Correlations of observed physical properties of both systems.
- \Rightarrow Measurement performed on one system seems to be instantaneously influencing other systems entangled with it.

- Observed in photons, atoms, superconductors, mesons, analog Hawking radiation, nitrogen-vacancy centers in diamond and even macroscopic diamond.

High Energy Physics Example

- At B-Factories, $e^{+} e^{-}$collisions can be properly adjusted in order to create $\Upsilon(4 S)(b \bar{b})$.
- $\Upsilon(4 S)(b \bar{b})$ decays to $B^{0}+\bar{B}^{0}$, where we have $\left|B^{0}\right\rangle=|\bar{b} d\rangle,\left|\bar{B}^{0}\right\rangle=|b \bar{d}\rangle$.
- We get an entangled state:

$\frac{1}{\sqrt{2}}\left(\left|B^{0}\right\rangle\left|\bar{B}^{0}\right\rangle-\left|\bar{B}^{0}\right\rangle\left|B^{0}\right\rangle\right)$.

EPR Paradox

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

EPR Paradox

- Entanglement: "spooky action at a distance" (A. Einstein).

- Assuming two particles with spacial distance.
- When a measurement is done on one of the particles, the other one "knows" about it immediately.
- Information travel faster than light?
- Contradicts the theory of relativity.
- Conclusion: the theory of Quantum Mechanics is incomplete.

Hidden Variables

- By EPR, each particle "carries" variables that knows the state before the measurement.
- \Rightarrow There are some hidden variables that are missing in order to have a full theory.
- The Copenhagen Interpretation: superposition of states until a measurement was done.
- Bohr Vs. Einstein.
"God does not play at dice with the universe".

"Quit telling God what to do!"
- Who is right?

Bell's Inequality

III. 5 ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

John S. Bell \dagger

- If local hidden variables holds, they should satisfy some inequality.
- $C(x, y)$ are the correlations between different measurements at different detectors.
- The parameters a, b, c are different directions for the measurement.
- Original form: $1+C(b, c) \geq|C(a, b)-C(a, c)|$.

Quantum State

- Pure state: can be described by wave-functions $\sum_{i} \alpha_{i} \cdot\left|\psi_{i}\right\rangle$.

- Mixed state: can be described by a density matrix: $\rho=\sum_{i} p_{i} \cdot\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$.
- Example: at the LHC we cannot control the initial state.

- Some inequalities can be measured related to ρ, providing an entanglement criterion.

Mathematical Formalism

- Two different systems A and B: $\mathcal{H}=\mathcal{H}_{a} \otimes \mathcal{H}_{b}$.
- Separable: $\rho=\sum_{n} p_{n} \rho_{n}^{a} \otimes \rho_{n}^{b}$.
- $\rho_{n}^{a, b}$ are quantum states in $A, B, \sum_{n} p_{n}=1, p_{n} \geq 0$
- Classically correlated state in $\mathcal{H} \rightarrow$ can be written in this form.
- Non-separable state is called entangled and hence, it is a non-classical state.

Separable

Non-Separable

Intuition: Spin States at Threshold

- The state is determined by the initial spins.
- $q \bar{q}: \rho^{q \bar{q}}=\left(\left|\uparrow_{\hat{\rho}} \uparrow_{\hat{\rho}}\right\rangle\left\langle\uparrow_{\hat{\rho}} \uparrow_{\hat{\rho}}\right|+\left|\downarrow_{\hat{\rho}} \downarrow_{\hat{\rho}}\right\rangle\left\langle\downarrow_{\hat{\rho}} \downarrow \hat{\rho}\right|\right) / 2$.
- $g g: \rho^{g g}=\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|$, with $\left|\Psi_{0}\right\rangle=\left(\left|\uparrow_{\hat{p}} \downarrow_{\hat{p}}\right\rangle-\left|\downarrow_{\hat{p}} \uparrow_{\hat{p}}\right\rangle\right) / \sqrt{2}$.
- $q \bar{q} \rightarrow$ correlated, not entangled; $g g \rightarrow$ correlated, entangled.

Basis Selection

- Helicity basis: $\{\hat{k}, \hat{r}, \hat{n}\}$:
- \hat{k} - direction of the top in the $t \bar{t} \mathrm{CM}$ frame.
- \hat{p} - direction of the beam.
- $\cos \Theta=\hat{k} \cdot \hat{p}$.
- $\hat{r}=(\hat{p}-\cos \Theta \hat{k}) / \sin \Theta$.
- $\hat{n}=\hat{r} \times \hat{k}$.
- Describe each individual process with a fixed direction.
- Beam basis: $\{\hat{x}, \hat{y}, \hat{z}\}$:
- \hat{z} along the beam axis.
- \hat{x}, \hat{y} transverse directions to the beam.
(-) After averaging: $C_{x}=C_{y}=C_{\perp}$.
- Studying the total quantum state.

Figure: Helicity basis. Figure is from Phys. Rev. D 100, 072002.

Spin-Correlations - $M_{t \bar{t}}$ Dependence

- Plots are shown with integration only for $\left[2 m_{t}, M_{t \bar{t}}\right]$.
c) Spin-correlations after
[$2 m_{t}, M_{t \bar{t}}$] integration.

Main: C_{\perp}, C_{z}, D
(quantum tomography).
Inset: $C_{r r}, C_{k k}$.
d) Main plot: Concurrence.

Inset: integrated cross-section.

Entanglement Criterion - Concurrence

- Concurrence:

$$
C[\rho] \equiv \max \left(0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right)
$$

- λ_{i} are the eigenvalues of the Concurrence matrix $\mathcal{C}(\rho)$.
- In our case $\mathcal{C}(\rho)=\rho$.
- $0 \leq C[\rho] \leq 1$, vanishing if and only if the state is separable.
- Compute the eigenvalues of ρ - apply a criterion for entanglement.

Entanglement Criterion - Peres-Horodecki

- Partial transpose in one subsystem. Example:

$$
\rho^{T_{B}}=\sum_{n} p_{n} \rho_{n}^{a} \otimes\left(\rho_{n}^{b}\right)^{T}
$$

- If ρ is separable, all of the eigenvalues of $\rho^{T_{B}}$ are non-negative.
- Reduces to the condition $\Delta>0$, with $\Delta \equiv-C_{n n}+\left|C_{k k}+C_{r r}\right|-1$.
- Total quantum state: can use any orthonormal basis to characterize entanglement.
- Link to concurrence: $C=\max (\Delta, 0) / 2$.
- We also depict: $D=\frac{\operatorname{tr}[\mathrm{C}]}{3}=-\frac{1+\Delta}{3}$.

