Measurement of the inclusive and differential cross section of a top quark pair in association with a Z boson at 13 TeV with the ATLAS detector

Florian Fischer on behalf of the ATLAS Collaboration

Ludwig-Maximilians-Universität München – LS Schaile –

13th International Workshop on Top-Quark Physics – Durham, September 16, 2020 –

- Measurement of *ttZ* cross section a direct access to *Z*-top quark coupling
 - \rightarrow Test of SM prediction
 - \rightarrow Sensitivity to BSM physics
- $t\bar{t}Z$ is an irreducible background to ...
 - \rightarrow SM measurements ($t\bar{t}t\bar{t}$, tWZ, tZq,...)
 - \rightarrow BSM searches (e.g. top squark production)

- $\sqrt{s} = 13$ TeV inclusive cross section measurement performed previously by ATLAS (3.2 fb⁻¹ Eur.Phys.J.C 77 (2017) 1, 40), (36.1 fb⁻¹ Phys.RevD 99 (2019) 7, 072009) and CMS (35.9 fb⁻¹ JHEP 08 (2018) 011)
- First differential measurement from CMS with 77.5 fb $^{-1}$ (JHEP 03 (2020) 056

- Measurement of $t\bar{t}Z$ cross section a direct access to Z-top quark coupling
 - \rightarrow Test of SM prediction
 - \rightarrow Sensitivity to BSM physics
- $t\bar{t}Z$ is an irreducible background to ...
 - \rightarrow SM measurements ($t\bar{t}t\bar{t}, tWZ, tZq, ...$)
 - \rightarrow BSM searches (e.g. top squark production)

- $\sqrt{s} = 13$ TeV inclusive cross section measurement performed previously by ATLAS (3.2 fb⁻¹ Eur.Phys.JC 77 (2017) 1, 40), (36.1 fb⁻¹ Phys.Rev.D 99 (2019) 7, 072009 and CMS (35.9 fb⁻¹ JHEP 08 (2018) 011)
- First differential measurement from CMS with $77.5\,{\rm fb}^{-1}$ (JHEP 03 (2020) 056
- First differential measurement by ATLAS and with full LHC Run 2 dataset (139fb⁻¹) ATLAS-CONF-2020-028

Analysis channels (ATLAS, 139 fb^{-1})

- Exactly 3 or 4 leptons (e, μ)
- OSSF lepton pair with $|m_{\ell\ell} m_Z| < 10 \,\text{GeV}$
- Use of orthogonal signal regions to retain high *S/B*
 - 3*l*: varying *b*-tagging working points based on jet multiplicity
 - 4ℓ: differing in *b*-jet multiplicity (1*b*, ≥ 2*b*), lepton flavour from the $t\bar{t}$ system (*ee* & μμ vs. *e*μ) and missing transverse energy

Background estimation (ATLAS, 139 fb⁻¹)

Prompt lepton background:

• WZ/ZZ+light-flavour jets backgrounds estimated in dedicated control regions orthogonal to signal regions by requirements on jet-/b-jet multiplicity and missing transverse energy

Leading lepton pT

Background estimation (ATLAS, 139 fb⁻¹)

Prompt lepton background:

- WZ/ZZ+light-flavour jets backgrounds estimated in dedicated control regions orthogonal to signal regions by requirements on jet-/b-jet multiplicity and missing transverse energy
- Other SM backgrounds (*tWZ*, *tZq*, *tT̄*, *tT̄W*,...) estimated from Monte Carlo

Leading lepton pT

Florian Fischer (LMU München)

TOP 2020 - Young Scientists Forum

Durham, September 16, 2020 3/6

300

Non-prompt/fake lepton background:

- Leptons from secondary decays
- Objects misidentified as leptons
- Estimated with fully data-driven matrix method

- Other SM backgrounds (tWZ, tZq, $t\bar{t}H$, $t\bar{t}W,\ldots$) estimated from Monte Carlo

Prompt lepton background:

• WZ/ZZ+light-flavour jets backgrounds estimated in dedicated control regions orthogonal to signal regions by requirements on jet-/b-jet multiplicity and missing transverse energy

3ℓ-WZ-CR Leading lepton pT

ATLAS Preliminary

√s = 13 TeV 139 fb⁻¹

0° 900

8 800

Background estimation (ATLAS, 139 fb^{-1})

WZ+jets

tī7

Data

77+iets

- Profile-likelihood fit performed based on total yields in each signal/control region
- Free parameters: $t\bar{t}Z$ signal strength and normalisation scales of WZ/ZZ+light-flavour jets backgrounds
- Measured $(3\ell+4\ell)$ inclusive cross section:

 $\sigma(pp \rightarrow t\bar{t}Z) = 1.05 \pm 0.05 \text{ (stat.)}^{+0.09}_{-0.08} \text{ (syst.)} \text{pb} = 1.05 \pm 0.10 \text{ pb}$

• Agreement with theoretical prediction:

 $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 0.863^{+0.07}_{-0.09} \text{ (scale) } \pm 0.03 \text{ (PDF} + \alpha_s \text{) pb} \text{ (Eur. Phys. J. C 79, 249 (2019))}$

D 1 1 1 1 1 1 1 1		
Dominant systematics:	$t\bar{t}Z$ parton shower	3.1 %
	tWZ modelling	2.9%
	b-tagging	2.9%
	WZ/ZZ modelling	2.8%
	tZq modelling	2.6 %

- Employed Iterative Bayesian Unfolding method Nucl. Instrum. Meth. A 362 (1995) 487
- Unfolded 9 variables sensitive to $t\bar{t}Z$ production
- Extrapolation to parton level (t, \bar{t}, Z before decay) and particle level (stable particles: $c\tau \ge 5 \text{ mm}$)
- Measurements of absolute and normalised cross sections

Absolute σ , parton-level Z- p_T

Normalised σ , parton-level Z-rapidity

- Latest ATLAS $t\bar{t}Z$ cross section measurements with 139 $\rm fb^{-1}$ in 3ℓ and 4ℓ channels
- First differential cross section measurements with full LHC Run 2 dataset
- Profile-likelihood fit for inclusive measurement
- Unfolded 9 variables to particle and parton level to determine absolute and normalised differential cross sections
- Results consistent with Standard Model predictions
- More on this analysis at TOP 2020 by Rustem Ospanov on 15 Sep 2020, 15:30
 - \rightarrow "Measurements of top-quark production in association with gauge bosons"

Backup

Run: 350751 Event: 2361796077 2018-05-20 13:04:35 CEST

- Event cleaning
- Pass ≥ 1 single- e/μ trigger + matching
- $N_\ell(\ell = e, \mu) = 3$
- *p*_T(ℓ1, 2, 3) > 27, 20, 20 GeV
- Sum of lepton charges ±1
- $\geq 1 \text{ OSSF pair with } |m_{\ell\ell}^Z m_Z| < 10 \text{ GeV}$
- m_{OSSF} > 10 GeV (required for all OSSF lepton pairs)

	3ℓ-Z-1b4j-PCBT	3 <i>ℓ-Z</i> -2b3j-PCBT	3 <i>ℓ-Z</i> -2b3j
	inclusive	inclusive	differential
N _{jets}	≥ 4	≥3	≥3
N _{b-jets}	1 @60 % veto add. <i>b-</i> jets @70 %	2 @70 %	2 @85 %

- Event cleaning
- Pass ≥ 1 single- e/μ trigger + matching
- $N_\ell(\ell = e, \mu) = 4$
- p_T(ℓ1, 2, 3, 4) > 27, 20, 10, 7 GeV
- ≥ 1 OSSF pair with $|m_{\ell\ell}^Z m_Z| < 10 \,\text{GeV}$
- *m*_{OSSF} > 10 GeV
- $N_{jets} \ge 2$

	4ℓ-SF-1b	4ℓ-SF-2b	4ℓ-DF-1b	4ℓ-DF-2b
$\ell\ell^{non-Z}$	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$
N _{b-jets} @85%	1 ≥2		1	≥ 2
E ^{miss} T	> 100 GeV if $ m_{\ell\ell}^{\text{non-}Z} - m_Z \le 10 \text{GeV}$	$> 50 \mathrm{GeV}$ if $ m_{\ell\ell}^{\mathrm{non-}Z} - m_Z \le 10 \mathrm{GeV}$	-	-
	$>$ 50 GeV if $ m_{\ell\ell}^{\text{non-}Z} - m_Z > 10$ GeV	-	-	-
		4 E N		A B N B

Florian Fischer (LMU München)

- Profile-likelihood fit performed based on total yields in each signal/control region
- Free parameters: $t\bar{t}Z$ signal strength and normalisation scales of WZ/ZZ+light-flavour jets backgrounds
- Measured $(3\ell{+}4\ell)$ inclusive cross section:

$$\sigma(pp \rightarrow t\bar{t}Z) = 1.05 \pm 0.05 \text{ (stat.)}^{+0.09}_{-0.08} \text{ (syst.)} \text{ pb} = 1.05 \pm 0.10 \text{ pb}$$

• Agreement with theoretical prediction:

 $\sigma_{t\bar{t}Z}^{\text{NLO+NNLL}} = 0.863^{+0.07}_{-0.09} \text{ (scale) } \pm 0.03 \text{ (PDF} + \alpha_s \text{) pb} \text{ Eut. Phys. J. C 79, 249 (2019)}$

Dominant systematics:

$t\bar{t}Z$ parton shower	3.1 %
tWZ modelling	2.9%
b-tagging	2.9%
WZ/ZZ modelling	2.8%
<i>tZq</i> modelling	2.6 %

- Observed & expected yields in all individual signal/control regions
- Data/MC ratio shown below
- Combined systematic & statistical errors in shaded band

Experimental uncertainties:

- JES/JER: 30 NP
- JFT: 19 NP
- Muon: 15 NP (ID, Iso, trigger, TTVA, p_T scale & resolution)
- Electron: 4 NP (ID, Iso, trigger, reco)
- ETmiss: 3 NP (soft term scale & resolution)
- EGamma: 2 NP (pT scale & resolution)
- JVT: 1 NP
- PU: 1 NP
- Lumi: 1 NP
- Real/fake lepton rates: 2 NP

Theoretical uncertainties:

- $t\bar{t}Z$: μ_F , μ_R , PDF & α_s uncertainties on modelling, shower and tune
- VV: μ_F , μ_R , PDF & α_s uncertainties on matching and resummation scale 20 %/30 % uncertainty on VV + c/b
- $tWZ: \mu_F, \mu_R, PDF \& \alpha_s$ modelling uncertainties from $DR1 \leftrightarrow DR2$
- $tZq: \mu_F, \mu_R, PDF \& \alpha_s$ tune variation, 30 % normalisation uncertainty
- ttH: PDF & scale uncertainties from NLO calculations & flat PDF uncertainty

< ロ > < 同 > < 回 > < 回 >

• All other processes have 50 % normalisation uncertainty

Unfolding

$$\underbrace{\frac{d\sigma}{dX_{i}}}_{\text{TRUTH}} = \frac{1}{\mathcal{L} \cdot \mathcal{B} \cdot \Delta X^{i} \cdot f_{acc}^{i}} \sum_{j} R_{ij}^{-1} \cdot \epsilon_{eff}^{i} \cdot \left(\underbrace{N_{obs}^{j} - N_{bkg}^{j}}_{\text{DATA}}\right)$$

with

- $\epsilon_{\rm eff} = N^{\rm reco \land truth} / N^{\rm reco}$
- $f_{acc} = N^{reco \wedge truth} / N^{truth}$

Recipe:

- 1. Subtract the MC background
- 2. Correct for "non-fiducial" event
- 3. Remove the detector smearing
- 4. Extrapolate into the truth phase space
- 5. Convert event count into cross section

Iterative Bayesian Unfolding (IBU)

- Iteratively approximate inverse of response matrix R
- Going after probabilities instead of truth estimators
- Take MC truth distributions as initial guess ("prior")
- Update guesses by applying Bayes' theorem

Region	Variable	Definition
3ℓ & 4ℓ	N _{jets}	Number of reconstructed jets with $p_{\rm T}$ > 25GeV and $ \eta $ < 2.5
3ℓ L	$p_{T}^{\ell(non-Z)}$	Tranverse momentum of the lepton to associated with the Z boson
	IA + (7 +lep)	Absolute angular separation in transverse plane between the Z boson
	$ \Delta \varphi(z, t, \gamma) $	and the top quark with the leptonically decaying W boson
	IAN(7 tlep)	Absolute rapdity separation between the Z boson and the top quark
	<i>Δy</i> (<i>∠</i> , <i>ι</i> ·)	with the leptonically decaying W boson
$4\ell \qquad \frac{ \Delta\phi(\ell_t^+,\ell_{\bar{t}}^-) }{ \Delta\phi(t\bar{t},Z) }$	$ \Delta\phi(\ell_t^+,\ell_{\overline{t}}^-) $	Absolute angular separation in tre transverse plane between the two
		leptons associated with the top quark pair
	tī	Transverse momentum of the $t\bar{t}$ system, calculated as the vector sum
	P_{T}	in the ϕ -plane of the two b -jets, the non- Z lepton pair and $E_{ m T}^{ m miss}$
	$ \Delta \phi(t\overline{t},Z) $	Absolute angular separation in the transverse plane between the Z boson
		and the $t\overline{t}$ system (defined as for $\rho_{T}^{t\overline{t}}$)
3ℓ/4ℓ-comb.	$ y^{Z} $	Absolute rapdity of the Z boson (reconstructed from the $m_{\ell\ell}^Z$ pair)
	$P_{\rm T}^Z$	Tranverse momentum f the Z boson (reconstruced as for $ y^{Z} $)

Ξ.

イロト イヨト イヨト イヨト

BSM processes to which $t\bar{t}Z$ is a possible background

