

Measuring the top quark Yukawa coupling using tt dilepton events at CMS

(CMS-TOP-19-008, <u>arXiv:2009.07123</u>)

Presented by Evan Ranken On behalf of the CMS Collaboration

The top-Higgs Yukawa coupling

 This coupling enters directly in, for instance, ttH production:

 But it can also appear in tt production via virtual Higgs exchange:

• EW diagrams begin to enter noticeably into $t\bar{t}$ production at $\mathcal{O}(\alpha_S^2 \alpha)$ —or in the case of Higgs exchange, more precisely at $\mathcal{O}(\alpha_S^2 g_t^2)$

Electroweak corrections to $t\overline{t}$ production

- These EW diagrams have a minimal effect on the overall cross section $\sigma_{t\bar{t}}$, but can have noticeable shape effects on differential distributions
- We generate a multiplicative correction $R_{EW}(M_{t\bar{t}}, \Delta y_{t\bar{t}})$ as a function of the **invariant mass** $M_{t\bar{t}}$ and the **difference in top quark rapidity**, $\Delta y_{t\bar{t}}$
- We parametrize the $R_{\rm EW}$ as a function of $Y_{\rm t} = g_{\rm t} / g_{\rm t}^{SM}$, and perform a profile likelihood fit on the parameter $Y_{\rm t}$

Event reconstruction & kinematic variables

- Although reconstruction of dilepton-channel top quark kinematics is theoretically possible to good approximation, it is hindered by multiple effects:
 - Highly sensitive to measured $p_{
 m T}^{
 m miss}$
 - Deviations from on-shell behavior
- We find that good sensitivity can be achieved using "proxy" kinematic variables:

$$M_{\mathbf{b}\mathbf{b}\ell\ell} = M(\mathbf{b} + \bar{\mathbf{b}} + \ell + \bar{\ell})$$
$$|\Delta y_{\mathbf{b}\ell\mathbf{b}\ell}| = |y(\mathbf{b} + \bar{\ell}) - y(\bar{\mathbf{b}} + \ell)|$$

16/09/2020

4/8

Effect of top Yukawa on binned data

- CMS
- We employ a coarse binning in $\Delta y_{b\ell b\ell}$ and a finer binning in the main sensitive variable, $M_{bb\ell\ell}$. Each bin has a yield $\propto Y_t^2$
- The shape effect of the EW corrections in this binning is shown below

Pre-fit agreement

Before fitting the parameter Y_t, we compare agreement between data and MC simulation across the full Run 2 period, both in the final binning and in other kinematic variables

Measurement outcome

CMS

- The profile likelihood scan yields $Y_t = 1.16^{+0.07}_{-0.08}(\text{stat})^{+0.17}_{-0.27}(\text{syst})$
- This achieves better precision than a similar CMS measurement in the lepton+jets channel, using 2016 data to obtain $Y_t = 1.07^{+0.34}_{-0.43}$ [PRD 100 072007 (2019)]
- We also bound $Y_t < 1.54$ at approximately 95% confidence, similar the most recent CMS "four top" search result of $Y_t < 1.7$ [<u>EPJC 80 75 (2020)</u>]

Conclusions

- We report a measured value of $Y_t = 1.16^{+0.24}_{-0.35}$
- This measurement uses a novel approach to determine the top quark
 Yukawa coupling, requiring minimal assumptions about other parameters
- It provides a complementary result to the recent paper in the lepton+jets channel using 2016 data [PRD 100 072007 (2019)] with some differences:
 - Lower backgrounds
 - Full CMS Run 2 dataset (2016-2018, 137 fb⁻¹)
 - Partial kinematic reconstruction
- The measurement is **limited by modelling uncertainties**, and we could see more precision added to similar measurements as modelling improves

Backup

Comparison to other measurements

- CMS
- The most precise CMS measurement of the top-Higgs Yukawa coupling comes from a combination fit using the κ -framework, yielding

 $Y_{\rm t} = 0.98 \pm 0.14 \ [EPJC$ **79**421 (2019)]

- However, that measurement uses a combination of several Higgs-related processes and folds in assumptions about other standard model parameters
- A more closely related measurement is that of four-top production. The most recent CMS four-top search yielded [<u>EPJC 80 75 (2020)</u>]

 $Y_{\rm t} < 1.7$ @ 95% confidence

• ATLAS also recently released a preliminary four top search, but they do not quote a Yukawa limit (arXiv:2007.14858)

• CMS-TOP-19-008: $Y_t = 1.16^{+0.24}_{-0.35}$, $Y_t < 1.54 @ 95\%$ C.L.

Dominant uncertainties

CMS

11/8

- Due to the complicated nature of modern event simulation and CMS data-taking from 2016-2018, we have over 50 independent sources of uncertainty in the fit
- The measurement is found to be limited primarily by modelling uncertainties, with the dominant few being:
 - **EW correction uncertainty** (covering contributions order $\alpha_S^3 \alpha$ terms)
 - Renormalization and factorization scale uncertainties (covering higher order QCD terms)
 - **Parton showering scale uncertainties** (uncertainty on modelling of initial- and final-state radiation)
- The only dominant *experimental uncertainty* comes from the calibration of the CMS detector's jet energy response as a function of jet η and $p_{\rm T}$:
 - jet energy scale corrections

Handling of uncertainties

- Uncertainties are included on signal and background normalization, as well as total integrated luminosity of events observed at CMS
- Other sources of systematic uncertainty are included as shape effects via vertical template morphing, with sample templates shown below

Dominant uncertainties

- Renormalization and factorization scale are each varied up and down by a factor of 2 in the POWHEG simulation
- The overall normalization effect is removed, as a separate uncertainty is applied on the tt cross section calculation (performed at NNLO)

Signal and background modeling

- **Signal:** tt modeled with Powheg+Pythia, reweighted via HATHOR
- Backgrounds
 - <u>Drell—Yann</u> Z boson decays (~ 2% of final sample)
 - <u>Single top</u> production ($\sim 2\%$ of final sample)
 - <u>Diboson</u> decays modeled with Pythia (< 0.5% of final sample)

CMS

Statistical setup and measurement

- CMS
- The measurement is performed via a maximum likelihood fit, with uncertainty assessed by a profile likelihood scan. We define the likelihood

$$\mathscr{L} = \left[\prod_{\mathrm{bin} \in (M_{\mathrm{b}\ell}, |\Delta y|_{bl})} \mathscr{L}_{\mathrm{bin}}\right] \times p(\phi) \times \prod_{i} p(\theta_i) \;,$$

$$\mathscr{L}_{\text{bin}} = \text{Poisson} \Big[n_{\text{obs}}^{\text{bin}} \Big| s^{\text{bin}}(\{\theta_i\}) \times R_{\text{EW}}^{\text{bin}}(Y_{\text{t}}, \phi) + b^{\text{bin}}(\{\theta_i\}) \Big\} \Big],$$

where

$$\circ n_{
m obs}^{
m bin} =$$
 total observed bin count

$$\circ ~s_{
m tr}^{
m bin} = {
m expected signal (all t ar{
m t} {
m events})}$$

- $\circ \ b^{\rm bin} = {\sf expected background}$
- $\{\theta_i\}, \phi =$ nuisance parameters
- $\circ \ p(heta_i), \ p(\phi) = ext{penalty terms}$ (Gaussian or log-normal pdfs)

and $R_{\rm EW}^{\rm bin}(Y_{\rm t},\phi)$ is the EW correction multiplier, including uncertainty modulated by ϕ

Comparison to lepton+jets measurement

 Our group performed a similar measurement in the lepton+jets channel using 2016 data only, published in 2019 (arXiv:1907.01590). We compare the results here

16/8

Source	2016 (36 fb $^{-1}$)	$2017 (41 \text{fb}^{-1})$	$2018 (60 \text{fb}^{-1})$	All (137fb^{-1})	% MC
$t\overline{t}$	140,830±130	$170,550{\pm}100$	$259,620{\pm}150$	571,010±220	96.2%
Drell-Yan	$1920{\pm}50$	2690 ± 80	4960 ± 130	$9840{\pm}170$	1.7%
Single t	3020 ± 30	3520 ± 20	5830 ± 30	$12,370{\pm}50$	2.1%
Diboson	$140{\pm}10$	$150{\pm}10$	250 ± 20	540±20	0.1%
Total	$145,940{\pm}150$	177,400±120	$270,660{\pm}200$	$593,760{\pm}280$	100%
Data	144,817	178,088	264,791	587,696	98.9%

Trigger & lepton selection

- Events are selected using **single-lepton triggers** in the CMS trigger system
- Online selection
 - muons: single isolated muon with $p_{\rm T}>24/27/24$ GeV in 2016/17/18
 - electrons: single isolated electron with $p_{\rm T} > 27/27/32$ GeV in 2016/17/18
- Offline Selection
 - Leading lepton: p_T > 30 GeV*, isolated
 *electrons in 2018 require p_T > 34 GeV to match trigger
 - Second lepton: $p_{\rm T} > 20$ GeV, isolated, opposite charge
 - Veto: additional isolated leptons with $p_{\rm T} > 15~{\rm GeV}$

Jet selection and background removal

CMS

- We use the **DeepCSV** algorithm to identify b jets
- This algorithm has 3 "b tagging" working points (WP): *loose, medium, tight* (in order of decreasing sensitivity, increasing specificity)

• Jet selection:

- $p_{\rm T} > 30 \; {\rm GeV}$
- Require at least 2 jets passing loose WP
- Consider events with >2 b-tagged jets if exactly 2 satisfy a higher WP

Additional selection requirements

to remove Drell-Yann background in the ee and $\mu\mu$ channels, we exclude events with:

- 81 GeV < *M*_{*ll*} < 101 GeV (**Z-mass cut**)
- M_{ll} < 50 GeV
- (low-mass Drell-Yann cut)
- $p_{\rm T}^{\rm miss} < 30 \,\,{\rm GeV}$ (missing $p_{\rm T} \,\,{\rm cut}$)

19/8

All systematic uncertainty sources

Correlation between years:	16-17	16-18	17-18
EW correction uncertainty	100%	100%	100%
background normalization	100%	100%	100%
renormalization & factorization scales	100%	100%	100%
b fragmentation, b decay	100%	100%	100%
pdf uncertainties	0%	0%	100%
ISR, FSR	50%	50%	100%
top mass *	100%	100%	100%
hdamp, MC tune *	0%	0%	0%
btag SFs, lepton SFs ^	50%	50%	50%
lumi^	30%	30%	30%
pileup	100%	100%	100%
JER	0%	0%	0%
JES (26 components)	Various		

* Indicates sources with significant statistical noise.

^ Indicates sources whose correlations were modified for simpler implementation.

Agreement between data and simulation

16/09/2020

Evan Ranken Top quark Yukawa coupling from tt dilepton events

Signal and background modeling

• **Signal:** tt modeled with PowhegV2+Pythia8, reweighted via *HATHOR*

Backgrounds

- <u>Single top</u> production modeled with PowhegV2+Pythia8 (~ 2% of final sample)
- <u>Drell-Yann</u> decays modeled with Madgraph at LO (~ 2% of final sample)
- <u>Diboson</u> decays modeled with Pythia (< 0.5% of final sample)

Kinematics of dilepton decays

 Conservation of energy E and momentum p dictate that on-shell particles must obey the relationships

 \overline{b}

$$E_t = E_b + E_W = E_b + E_l + E_\nu$$
$$p_t = p_b + p_W = p_b + p_l + p_\nu$$

While we also have the constraint on transverse momentum p_T:

 $\sum_{\text{all}} p_{\text{T}} = 0 = \left(\sum_{\text{observed}} p_{\text{T}}\right) + p_{\text{T}}^{\text{miss}}$

X

 $\bar{\nu}$

beam

axis

Electroweak contribution formalism

• A generic observable $\Sigma^{t\bar{t}}$ (such as $\frac{d\sigma}{dM_{t\bar{t}}}$) is expanded in a series as

$$\Sigma^{t\bar{t}}(\alpha_s,\alpha) = \sum_{m+n \ge 2} \alpha_s^m \alpha^n \Sigma_{m,n}$$

• In this analysis the following contributions are of interest:

$$\Sigma_{\text{LO QCD}} = \alpha_s^2 \Sigma_{2,0}$$

$$\Sigma_{\text{NLO QCD}} = \alpha_s^3 \Sigma_{3,0}$$

$$\Sigma_{\text{NLO EW}} = \alpha_s^2 \alpha \Sigma_{2,1}$$

$$\Sigma_{\text{extra EW}} = \alpha_s^3 \alpha \Sigma_{3,1}$$

• A standard EW corrections K-factor can be defined as:

$$K_{\rm EW}^{\rm NLO} = \frac{\Sigma_{\rm LO \ QCD} + \Sigma_{\rm NLO \ EW}}{\Sigma_{\rm LO \ QCD}}$$

• Sometimes, $\mathcal{O}(\alpha_s^3 \alpha)$ terms are included up to one loop in the definition of "NLO EW" contributions

16/09/2020

Electroweak contribution formalism

• We take a *multiplicative* approach to adding EW corrections:

$$\Sigma_{\rm POWHEG\times EW} = K_{\rm EW}^{\rm NLO} \times \Sigma_{\rm POWHEG}$$

as opposed to a strictly *additive* approach:

$$\Sigma_{\rm POWHEG+EW} = \Sigma_{\rm POWHEG} + \Sigma_{\rm NLO \ EW}$$

- This multiplicative approach approximates the inclusion of order $\alpha_S^3 \alpha$ terms. This approximation works particularly well at high values of s, where dominant EW corrections take the form of Sudakov logarithms.
- Near the production threshold, there is significant uncertainty in this method due to $\mathcal{O}(\alpha_S^3 \alpha)$ contributions. To account for this, in the sensitive region where expected bin yield is increasing as a function of Y_t , the difference between multiplicative and additive approaches is taken as an uncertainty, suggested by HATHOR authors.
- $\circ~$ Even using a generator that includes EW diagrams up to order $\mathcal{O}(\alpha_s^3\alpha)$ at one loop will not avoid this uncertainty (due to 2-loop contributions)

Implementation of EW uncertainty

 $\circ~$ The full expression for the EW multiplier $R_{\rm EW}$ used in the fit, including the associated uncertainty, is

$$R_{\rm EW}^{\rm bin}(Y_{\rm t},\phi) = (1 + \delta_{\rm EW}^{\rm bin}(Y_{\rm t})) \times (1 + \delta_{\rm QCD}^{\rm bin} \delta_{\rm EW}^{\rm bin}(Y_{\rm t}))^{\phi}.$$

Nominally, $R_{\rm EW}^{\rm bin} = 1 + \delta_{\rm EW}^{\rm bin}$, but here $\delta_{\rm QCD}^{\rm bin} \delta_{\rm EW}^{\rm bin}$ represents the cross-term arising from the difference in multiplicative and additive approaches. Specifically,

$$\delta_{\rm EW} = (K_{\rm EW}^{\rm NLO}(Y_{\rm t}) - 1) \longrightarrow \delta_{\rm EW}^{\rm bin} = \frac{n_{\rm HATHOR}^{\rm bin} - n_{\rm LO}^{\rm bin}}{n_{\rm LO}^{\rm bin}}$$
$$\delta_{\rm QCD} = \frac{\Sigma_{\rm POWHEG} - \Sigma_{\rm LO \ QCD}}{\Sigma_{\rm POWHEG}} \longrightarrow \delta_{\rm QCD}^{\rm bin} = \frac{n_{\rm POWHEG}^{\rm bin} - n_{\rm LO}^{\rm bin}}{n_{\rm POWHEG}^{\rm bin}}$$

 $\circ~$ The uncertainty term is included only in the sensitive region where virtual Higgs exchange enhances $t\bar{t}$ production.