### ALL-HADRONIC RESOLVED DIFFERENTIAL TTBAR CROSS-SECTION MEASUREMENTS

Riccardo Poggi on behalf of the ATLAS collaboration

### **OVERVIEW OF THE ANALYSIS**

- Channel with the largest BR  $\sim 46\%$
- Full kinematic reconstruction of both tops
- Study correlations between additional jet radiation and top (system) kinematics
  - New observables to describe the kinematics of the extra-jets
  - Studying the parameter related to the additional jets emission in the MC generators
- Helpful for searches where ttbar+jet is a major background
  - Reduce modelling systematic
- Particle level results
  - Rivet routine used for MC studies
- Parton level results
  - Unfolded results available as input for measurement of top pole mass and PDF fit
- Total and differential cross-section
  - Absolute and normalised
  - Fiducial and full phase-space



## ANALYSIS STRATEGY

- Fiducial phase space at particle level
  - Analogous to detector level selection
- Full phase-space at parton level
- System reconstruction performed selecting the combination that minimises the  $\chi^2$ 
  - χ<sup>2</sup> computed for all possible permutations and the permutation with the smallest value is selected
  - Jet assignment based on W mass constraint and top anti-top mass agreement
    - Sigma values extracted from mass distributions in simulated MC events
  - Particle level efficiency ~ 85% in 6 jets exclusive region, 60-75% in 7-9 jets region
  - Parton level efficiency ~ 75% in 6 jets exclusive, ~ 65% in 7 jets exclusive, ~45-60% in 8-9 jets regions

- Multi-jet background
  - Dominant background component
  - Data driven ABCD method
    - (see extra for more details)
  - Negligible contamination for Njets == 6
- Unfolding
  - D'Agostini iterative, four iterations





### **UNCERTAINTIES**

#### SUMMARY ON INCLUSIVE XS

| Source           | Uncertainty [%] |              |  |  |
|------------------|-----------------|--------------|--|--|
|                  | Particle level  | Parton level |  |  |
| PS/hadronisation | 8.2             | 7.9          |  |  |
| Multi-jet syst.  | 7.7             | 7.7          |  |  |
| JES/JER          | 6.7             | 6.7          |  |  |
| ISR, PDF         | 3.3             | 3.5          |  |  |
| ME generator     | 2.4             | 5.3          |  |  |
| Flavour tagging  | 2.2             | 2.2          |  |  |
| Luminosity       | 2.1             | 2.1          |  |  |
| Multi-jet stat.  | 0.6             | 0.6          |  |  |
| MC signal stat.  | 0.3             | 0.3          |  |  |
| Stat. unc.       | 0.7             | 0.7          |  |  |
| Stat.+syst. unc. | 14              | 15           |  |  |

- Relative uncertainties on the inclusive cross-section
- PS/hadronisation dominant followed by multi-jet background and JES/JER

#### **PARTON LEVEL**



#### PARTICI F I FVFI

- Normalised fractional uncertainties
- Dominant systematics: JES/JER and modelling
- Multi-jet background systematic relevant only in low statistics regions

#### 16 Sep. 2020

TOP2020

CSignal Stat

700

 $p_{\tau}^{t,1}$ [GeV]

800

### RESULTS – 1D

TOP2020

- Leading top p<sub>T</sub> shown here as example
- Summary of the 1D measurements
  - Angular distributions are well modelled
  - Transverse momentum distributions between tops, decay products and FSR are poorly described by MC
  - MC modelling cannot simultaneously get the top  $p_{\mathsf{T}}$  and the  $tt^{\mathsf{T}}\,p_{\mathsf{T}}$  correct
- Highlight feature of extra jet radiation
  - $\Delta R$  between leading jet and leading extra jet
  - Peak at 0 is where the leading jet is from an ISR emission
  - Significant mismodelling for Shrepa, aMC@NLO+Pythia8, Powhet+Herwig7
  - Underestimate how frequently the leading jet comes from a top









# PARTON

PARTICLE

### RESULTS – 2D

- Chi2 and p-value agreement between MC prediction and data
  - Evaluated using the full covariance matrix due to data statistics and systematic uncertainties
  - No MC prediction is compatible with data in all 2D distribution

| $\begin{array}{c} \begin{array}{c} 10^{7} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{6} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ $                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS Preliminary<br>(\$ = 13 TeV, 36.1 fb <sup>-1</sup><br>All-had resolved<br>Fiducial phase-space<br>Normalised cross-section<br>1.4<br>0.9<br>0.9<br>0.9<br>0.7<br>1.4<br>0.5<br>1.4<br>0.5<br>1.4<br>0.5<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c} 0.6 \\ 0.6 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 $ |

| Observable                                    | PWG+PY8             |                 | PWG+PY8 Var. Up     |         | PWG+PY8 Var. Down   |         | AMC@NLO+PY8   |                 | Sherpa        |                 | PWG+H7              |                 |
|-----------------------------------------------|---------------------|-----------------|---------------------|---------|---------------------|---------|---------------|-----------------|---------------|-----------------|---------------------|-----------------|
|                                               | $\chi^2/\text{NDF}$ | <i>p</i> -value | $\chi^2/\text{NDF}$ | p-value | $\chi^2/\text{NDF}$ | p-value | $\chi^2$ /NDF | <i>p</i> -value | $\chi^2$ /NDF | <i>p</i> -value | $\chi^2/\text{NDF}$ | <i>p</i> -value |
| $\Delta \phi^{t\bar{t}}$ vs $N_{\text{jets}}$ | 29.8/11             | < 0.01          | 24.1/11             | 0.01    | 57.0/11             | < 0.01  | 140.0/11      | < 0.01          | 16.9/11       | 0.11            | 24.0/11             | 0.01            |
| P <sub>cross</sub>   vs N <sub>jets</sub>     | 14.0/12             | 0.30            | 5.7/12              | 0.93    | 30.3/12             | < 0.01  | 50.7/12       | < 0.01          | 16.7/12       | 0.16            | 8.0/12              | 0.78            |
| $ P_{out}^{t,1} $ vs $N_{jets}$               | 53.5/13             | < 0.01          | 35.4/13             | < 0.01  | 86.3/13             | < 0.01  | 112.0/13      | < 0.01          | 28.2/13       | < 0.01          | 26.3/13             | 0.02            |
| $ y^{t\bar{t}} $ vs $m^{t\bar{t}}$            | 41.4/23             | 0.01            | 27.1/23             | 0.25    | 52.9/23             | < 0.01  | 45.3/23       | < 0.01          | 32.3/23       | 0.09            | 26.8/23             | 0.27            |
| $p_{\rm T}^{t,1}$ vs $N_{\rm jets}$           | 28.2/18             | 0.06            | 25.4/18             | 0.12    | 45.4/18             | < 0.01  | 70.7/18       | < 0.01          | 44.8/18       | < 0.01          | 28.2/18             | 0.06            |
| $p_{\mathrm{T}}^{t,1}$ vs $m^{t\bar{t}}$      | 31.9/10             | < 0.01          | 16.8/10             | 0.08    | 48.1/10             | < 0.01  | 46.6/10       | < 0.01          | 11.5/10       | 0.32            | 15.3/10             | 0.12            |
| $p_{\rm T}^{t,1}$ vs $p_{\rm T}^{t,2}$        | 17.6/11             | 0.09            | 21.8/11             | 0.03    | 27.3/11             | < 0.01  | 38.3/11       | < 0.01          | 28.9/11       | < 0.01          | 10.4/11             | 0.49            |
| $p_{\rm T}^{t,2}$ vs $N_{\rm jets}$           | 25.5/13             | 0.02            | 14.9/13             | 0.32    | 47.7/13             | < 0.01  | 108.0/13      | < 0.01          | 19.5/13       | 0.11            | 23.4/13             | 0.04            |
| $p_{\rm T}^{t,2}$ vs $m^{t\bar{t}}$           | 21.2/11             | 0.03            | 6.2/11              | 0.86    | 40.1/11             | < 0.01  | 35.9/11       | < 0.01          | 9.3/11        | 0.59            | 8.3/11              | 0.69            |
| $p_{\rm T}^{t\bar{t}}$ vs $N_{\rm jets}$      | 28.9/10             | < 0.01          | 16.2/10             | 0.09    | 56.3/10             | < 0.01  | 149.0/10      | < 0.01          | 21.5/10       | 0.02            | 12.0/10             | 0.28            |
| $p_{\mathrm{T}}^{t\bar{t}}$ vs $m^{t\bar{t}}$ | 25.4/10             | < 0.01          | 43.0/10             | < 0.01  | 33.7/10             | < 0.01  | 33.5/10       | < 0.01          | 26.9/10       | < 0.01          | 14.0/10             | 0.17            |

TOP2020

×10<sup>3</sup>

### **COMPARISON RESULTS**

#### ALL-HADRONIC wrt L+JETS

- Same phase space and object definition at parton level
- Consistent in the overlap region
- Complementary bin resolutions between the two channels

### ALL-HADRONIC wrt BOOSTED

- Direct comparison not possible
  - Fiducial vs. full phase-space
- Ratio consistent in the overlap region



#### TOTAL CROSS-SECTION



- Powheg+Herwig7 has the largest discrepancy from total XS
  - On the other hand it has the best description for differential distributions

I+jets and boosted paper: https://link.springer.com/article/10.1140/epjc/s10052-019-7525-6

### SUMMARY

- Comprehensive cross-section measurement
  - Single- and double-differential
  - Absolute and normalised
  - Particle and parton levels
- Several kinematic variables
  - Additional novel variables to study top associated jet radiation
- Data driven background estimate strategy
- Results sensitive to different aspects of MC
  - Improve top-quark MC modelling
  - Check out Simone Amoros's talk which presents new MC studies using our Rivet routine
    - https://conference.ippp.dur.ac.uk/event/891/contributions/4891/
- Parton level results can be used for PDF and top pole mass extraction

JHEP PAPER

https://arxiv.org/abs/2006.09274

TOP2020



### **BACKGROUND ESTIMATE**

- Data driven ABCD method
  - estimated bin-by-bin for all observables
- Discriminant variables
  - Nr. of b-jets
  - Combination of top masses
- Nominal estimate
  - A<sub>1</sub>, B<sub>1</sub>, C, D
  - Using the 1 b-tagged region
- Alternate estimate for uncertainty
  - A<sub>0</sub>, B<sub>0</sub>, C, D
  - Using the 0 b-tagged region
- Gap between SR and CR region
  - White area in the chart
  - Significant reduction of the signal contamination

| mass region                                                              | condition                                                                                                                                 |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $(m_{t1}, m_{t2}) \in \text{tail}$<br>$(m_{t1}, m_{t2}) \in \text{peak}$ | if at least one top with $m_t < 120 \text{ GeV}$ or $m_t > 250 \text{ GeV}$<br>if both top have $130 \text{ GeV} < m_t < 200 \text{ GeV}$ |

Table 4: Definition of the mass region based on the  $m_t$  of the two top quarks.





D: signal region  $A_1, B_1$ : QCD Estimate  $A_0, B_0$ : Used for uncertainty

$$D'(X) = \frac{B_0(X) \cdot C(X)}{A_0(X)}$$
$$\Delta D = D' - D$$

16 Sep. 2020

TOP2020