ALL-HADRONIC RESOLVED
DIFFERENTIAL TTBAR
CROSS-SECTION MEASUREMENTS

Riccardo Poggi
on behalf of the ATLAS collaboration
OVERVIEW OF THE ANALYSIS

- Channel with the largest BR ~ 46%
- Full kinematic reconstruction of both tops
- Study correlations between additional jet radiation and top (system) kinematics
 - New observables to describe the kinematics of the extra-jets
 - Studying the parameter related to the additional jets emission in the MC generators
- Helpful for searches where ttbar+jet is a major background
 - Reduce modelling systematic
- Particle level results
 - Rivet routine used for MC studies
- Parton level results
 - Unfolded results available as input for measurement of top pole mass and PDF fit
- Total and differential cross-section
 - Absolute and normalised
 - Fiducial and full phase-space

- Offline Selection
 - 2 b-jets exclusive (70%)
 - Zero leptons
 - Leading 6 jets $p_T > 55$ GeV
 - Extra jets $p_T > 25$ GeV
ANALYSIS STRATEGY

- Fiducial phase space at particle level
 - Analogous to detector level selection
- Full phase-space at parton level
- System reconstruction performed selecting the combination that minimises the χ^2
 - χ^2 computed for all possible permutations and the permutation with the smallest value is selected
 - Jet assignment based on W mass constraint and top anti-top mass agreement
 - Sigma values extracted from mass distributions in simulated MC events
 - Particle level efficiency ~ 85% in 6 jets exclusive region, 60-75% in 7-9 jets region
 - Parton level efficiency ~ 75% in 6 jets exclusive, ~ 65% in 7 jets exclusive, ~45-60% in 8-9 jets regions
- Multi-jet background
 - Dominant background component
 - Data driven ABCD method
 - (see extra for more details)
 - Negligible contamination for $N_{jets} == 6$
- Unfolding
 - D’Agostini iterative, four iterations

\[\chi^2 = \frac{(m_{p_1j_1j_2} - m_{p_2j_3j_4})^2}{2\sigma_i^2} + \frac{(m_{j_1j_2} - m_W)^2}{\sigma_W^2} + \frac{(m_{j_3j_4} - m_W)^2}{\sigma_W^2} \]
UNCERTAINTIES

SUMMARY ON INCLUSIVE XS

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particle level</td>
</tr>
<tr>
<td>PS/hadronisation</td>
<td>8.2</td>
</tr>
<tr>
<td>Multi-jet syst.</td>
<td>7.7</td>
</tr>
<tr>
<td>JES/JER</td>
<td>6.7</td>
</tr>
<tr>
<td>ISR, PDF</td>
<td>3.3</td>
</tr>
<tr>
<td>ME generator</td>
<td>2.4</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>2.2</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.1</td>
</tr>
<tr>
<td>Multi-jet stat.</td>
<td>0.6</td>
</tr>
<tr>
<td>MC signal stat.</td>
<td>0.3</td>
</tr>
<tr>
<td>Stat. unc.</td>
<td>0.7</td>
</tr>
<tr>
<td>Stat.+syst. unc.</td>
<td>14</td>
</tr>
</tbody>
</table>

- Relative uncertainties on the inclusive cross-section
- PS/hadronisation dominant followed by multi-jet background and JES/JER

PARTICLE LEVEL

- Normalised fractional uncertainties
- Dominant systematics: JES/JER and modelling
- Multi-jet background systematic relevant only in low statistics regions
RESULTS – 1D

- Leading top p_T shown here as example
- Summary of the 1D measurements
 - Angular distributions are well modelled
 - Transverse momentum distributions between tops, decay products and FSR are poorly described by MC
 - MC modelling cannot simultaneously get the top p_T and the $t\bar{t}$ p_T correct
- Highlight feature of extra jet radiation
 - ΔR between leading jet and leading extra jet
 - Peak at 0 is where the leading jet is from an ISR emission
 - Significant mismodelling for Shrepa, aMC@NLO+Pythia8, Powhet+Herwig7
 - Underestimate how frequently the leading jet comes from a top

16 Sep. 2020

TOP2020
RESULTS – 2D

- Chi2 and p-value agreement between MC prediction and data
 - Evaluated using the full covariance matrix due to data statistics and systematic uncertainties
 - No MC prediction is compatible with data in all 2D distribution
COMPARISON RESULTS

ALL-HADRONIC wrt L+JETS
- Same phase space and object definition at parton level
- Consistent in the overlap region
- Complementary bin resolutions between the two channels

ALL-HADRONIC wrt BOOSTED
- Direct comparison not possible
 - Fiducial vs. full phase-space
- Ratio consistent in the overlap region

16 Sep. 2020

TOTAL CROSS-SECTION

ATLAS Preliminary
\(\bar{p}p = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)

Fiducial phase-space

All-had resolved

- Nominal
- POWHEG+Pythia8*
- Alternative additional radiation
- POWHEG+Pythia8 Rad. up*
- POWHEG+Pythia8 Rad. down*
- Alternative ME/PS
- POWHEG+Herwig7*
- MG5_aMC@NLO+Pythia8*
- Sherpa 2.2.1*

Inclusive fiducial cross-section [pb]

- Powheg+Herwig7 has the largest discrepancy from total XS
 - On the other hand it has the best description for differential distributions

|------------|------------------|------|

\(^* \) normalized to NNLO+NLL, M. Czakon and A. Mitov, Comput. Phys. Commun. 185 (2014) 2930

Scale,PSwR(\+,-) uncertainty on the k-factor
SUMMARY

• Comprehensive cross-section measurement
 − Single- and double-differential
 − Absolute and normalised
 − Particle and parton levels

• Several kinematic variables
 − Additional novel variables to study top associated jet radiation

• Data driven background estimate strategy

• Results sensitive to different aspects of MC
 − Improve top-quark MC modelling
 − Check out Simone Amoros’s talk which presents new MC studies using our Rivet routine
 • https://conference.ippp.dur.ac.uk/event/891/contributions/4891/

• Parton level results can be used for PDF and top pole mass extraction
EXTRA
BACKGROUND ESTIMATE

- Data driven ABCD method
 - estimated bin-by-bin for all observables
- Discriminant variables
 - Nr. of b-jets
 - Combination of top masses
- Nominal estimate
 - A_1, B_1, C, D
 - Using the 1 b-tagged region
- Alternate estimate for uncertainty
 - A_0, B_0, C, D
 - Using the 0 b-tagged region
- Gap between SR and CR region
 - White area in the chart
 - Significant reduction of the signal contamination

<table>
<thead>
<tr>
<th>mass region</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(m_{t1}, m_{t2}) \in\ \text{tail}$</td>
<td>if at least one top with $m_t < 120$ GeV or $m_t > 250$ GeV</td>
</tr>
<tr>
<td>$(m_{t1}, m_{t2}) \in\ \text{peak}$</td>
<td>if both top have 130 GeV < m_t < 200 GeV</td>
</tr>
</tbody>
</table>

Table 4: Definition of the mass region based on the m_t of the two top quarks.

$$D(X) = \frac{B_1(X) \cdot C(X)}{A_1(X)}.$$

$$D'(X) = \frac{B_0(X) \cdot C(X)}{A_0(X)}.$$

$$\Delta D = D' - D$$

D: signal region
A_1, B_1: QCD Estimate
A_0, B_0: Used for uncertainty