Beyond Standard Model Top Quark Interactions — Anomalous Couplings —

Top Workshop 2020 14-18 September, Durham, UK

Mohammad J. Kareem on behalf of the ATLAS and CMS collaborations

Outline

Top Quark Interactions

Probing Wtb structure

- W boson polarization
- Triple-differential angular decay rate

Searching for **new decay vertex** or modified **Wtb** structure

Polarization and spin correlation

Probing ttg structure

- Forward-backward Production Asymmetry
- CP violating anomalous top quark couplings
- Probing top u/c quark and neutral boson coupling (FCNC in top quark)
 - Search for $t \rightarrow q\gamma$
 - Search for $t \rightarrow qZ$
 - Search for $t \rightarrow qH$

The Wtb Vertex

- Single top production and decay
- Angular distributions of the top quark decay products
- sensitive to W helicity fractions

Probing Wtb structure

W boson polarization measurements @ LHC

- Multiple measurements performed by ATLAS and CMS in Run 1
- Using top pair and singe top events
- The lepton angular distribution in W rest frame is sensitive to the W polarization
- All measurements so far are compatible with SM prediction at NNLO QCD

<u>#LHCTopWG</u>

F_L=0.311±0.005

SM NNLO calculation: Phys. Rev. D81, 111503 (2010)

F_B0=0.0017±0.0001

F₀=0.687±0.005

W Boson Polarization Measurements

SM

_ = 20.2 fb⁻¹

+ Best Fit 68% CL

95% CL

× Best Fit

68% CL

CMS, **Combination of W boson polarization measurements @8TeV** JHEP 08 (2020) 51 Precision of ~ 2% in F₀, ~3.5% in F_L is achieved $\operatorname{Re}(g_{\mathrm{R}})$ ATLAS+CMS Assumptions: $V_1 = 1, q$ LHC*top*WG Improvement w.r.t previous most precise individual s = 8 TeV ATLAS. 0.05 measurements: ~25% in F_0 , ~29% in F_L CMS, L = 19.7 fb $F_0 = 0.693 \pm 0.009(\text{stat+bkg}) \pm 0.011(\text{syst})$ -0.05 $F_{I} = 0.315 \pm 0.006(\text{stat+bkg}) \pm 0.009(\text{syst})$ $F_{R} = -0.008 \pm 0.005(\text{stat+bkg}) \pm 0.006(\text{syst})$ -0. -0.2 -0.1 0 0.1 0.2 0.3 -0.3Lead by stat+bkg, radiation&scales, MC stats $\operatorname{Re}(g_{_{\mathrm{R}}})$ 0. Compatible with SM prediction at NNLO QCD ATLAS+CMS 0.08 LHC*top*WG **√**s = 8 TeV 0.06 Tightened the previous allowed regions of the Wtb anomalous

couplings (assuming real coefficients \rightarrow CP-conserving)

-0.1

-0.15

0.15 $\operatorname{Re}(g_{1})$

0.2

95% CL

1D limits @ 9	5% CL interval
Coupling	ATLAS+CMS
$\operatorname{Re}(V_{\mathrm{R}})$	[-0.11, 0.16]
$\operatorname{Re}(g_{\mathrm{L}})$	[-0.08, 0.05]
$\operatorname{Re}(g_{\mathrm{R}})$	[-0.04, 0.02]

0

0.05

0.1

-0.05

-0.1

5

Probing Wtb structure

Triple-differential angular decay rates in t-channel single-top-quark

- In hadron colliders top quarks are produced predominantly in pairs (tt).
- Unlike $t\overline{t}$, single top is produced **polarized**.
- In the t-channel single-top-quark production, both production and decay proceed through the Wtb vertex
- BSM in production or decay can modify angular distributions of the decay products of polarized top quarks
- Oirect searches for anomalous couplings in t-channel single-top-quark events set limits simultaneously on **Real** and **Imaginary** part of anomalous couplings

• Degree of polarization: $P \equiv \hat{p}_s \cdot \vec{s}_t / |\vec{s}_t| \sim 90\%$ at 8 TeV for SM couplings

Triple-differential angular decay rates

Analysis

- Analyzed data: 20.2 fb⁻¹ at 8 TeV
- Selection: exactly one lepton, $E_{\rm T}^{\rm miss}$, and two jets (1b-jet + 1untagged jet)
 - o transverse mass $m_T(\ell E_T^{\text{miss}}) > 50 \text{GeV}$
 - o untagged jet must be in the forward region
- W boson and Top quark are fully reconstructed from the final state objets four-momenta, to obtain q, p_s and p_l vectors
- Largest backgrounds: tt, W+jets events
- signal and backgrounds normalizations estimated via simultaneous maximum-likelihood fit to the data

- The model is based on the three angles θ, θ^* , and φ^*
- to determine:
 - o generalized helicity fractions
 - o phases
 - o top quark polarization

Triple-differential angular decay rates

Results

- The angular coefficients measurement is compatible with SM
- Limits obtained in the space of the generalized helicity fractions and phases and polarization (P), and translated to Wtb anomalous couplings ratios and P (no external constraints or assumptions)

$$\begin{split} \left| V_{R} / V_{L} \right| &< 0.37 \quad (95\% \text{ CL}) \\ \left| g_{R} / V_{L} \right| &< 0.29 \quad (95\% \text{ CL}) \\ P &> 0.72 \qquad (95\% \text{ CL}) \\ \text{Re}[\frac{g_{R}}{V_{L}}] &\in [-0.12, 0.17] \quad \text{and} \quad \text{Im}[\frac{g_{R}}{V_{L}}] &\in [-0.07, 0.06] \end{split}$$

CMS results in [JHEP02 (2017) 028], obtained in single top t-channle assuming real couplings: $|f_v^R| < 0.16$, $|f_T^L| < 0.057$, and $-0.049 < |f_T^R| < 0.048$

Where it comes from?

- Top quarks decay before fragmentation
 - spin information is preserved in the final state
- In SM, top quarks from tt produced un-polarized, and spins are strongly correlated but ...
 - New physics could induce polarization
 - change spin structure via new mediator or change the *Wtb* vertex structure

Indirect vs. direct measurements

Indirect:

- Top spins determine the preferred lepton directions
 - o charged lepton is perfect spin analyzer
 - $\Delta \phi$: angle between leptons in transverse plan
 - Iarge $\Delta \phi$ preferred: tops are produced back to back
 - We can **indirectly probe** the spin correlations using Δφ in the lab frame!
 - experimentally very precise because lepton angles have excellent resolution

Direct:

- Requires full tt reconstruction
- Spin density matrix (R) → Matrix Element:

$$|\mathcal{M}(q\bar{q}/gg \to t\bar{t} \to (\ell^+\nu b)(\ell^-\bar{\nu}\bar{b}))|^2 \sim Tr[\rho R\bar{\rho}].$$

- Can define observables sensitive to the coefficients of the decomposed matrix R.
- Measurements: differential cross section of $t\overline{t}$ production: $\frac{1}{\sigma} \frac{d\sigma}{dx} = \frac{1}{2}(1 + [\text{Coef.}]x)f(x)$

Analysis

10

- Top quark 4-momenta is fully reconstructed
- Probe spin in 3D (15 observables):
 - related to independent coefficients of spin-dependent parts of the tt production density matrix
 - Each coefficient is extracted from a measured normalized differential tt cross section

Indirect result using $\Delta \varphi$ (II): $F_{SM}(\Delta \varphi) = 1.10^{+0.14}_{-0.17}$

Fully consistent with SM

Top quark anomalous chromomagnetic dipole moment (CMDM) constrain: $-0.07 < C_{tG} / \Lambda^2 < 0.16 \text{ TeV}^{-2}$ at 95% CL

Phys. Rev. D 100 (2019) 072002

CMS

Results

- Measured top quark polarization: consistent with zero
- opening angle between the leptons (in parent top rest frames) has **maximal sensitivity** to the alignment of the top quark spins: $\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$
 - D= -0.237± 0.007±0.009
 - f_{SM} =0.97± 0.05
- Results are consistent with unity → measured spin correlation strengths are in agreement with SM prediction

Where it comes from?

- @LO: top quark and top anti-quark are symmetric with respect to the angular distribution
- **Whigher orders:** interference terms between between $q\overline{q} \rightarrow t\overline{t}$ causes an **asymmetry:**

 $A_{FB} = \frac{\sigma(c^* > 0) - \sigma(c^* < 0)}{\sigma(c^* > 0) + \sigma(c^* < 0)}$

BSM causes Angular distribution anomalies:

- o impose modification to the ttg vertex,
- o introduce high-mass resonances coupled to top

• tt production @LHC is dominated by $gg \rightarrow t\overline{t}$ (~ 90% @13TeV)

2

Analysis

- Analyzed data: 35.9 fb⁻¹ at 13 TeV
- Selection: Lepton+jets events with "boosted" and "resolved" topologies
- $t\overline{t}$ events fully reconstructed via kinematic fit
- The $q\overline{q}$ subprocess is approximated as a linear function of c*

$$\frac{d\sigma}{dc^{*}}(q\overline{q}) \approx f_{sym}(c^{*}) + \left[\int_{-1}^{1} f_{sym}(x) dx\right] c^{*}A_{FB}^{(1)}(m_{t\overline{t}})$$

Templates are built using m_{tt}, c* and X_F scaled longitudinal momentum
 Anomalous chromoelectric (dt) + chromomagnetic (µt) dipole moments are probed from the symmetric term

CP violating anomalous top quark couplings

Where it comes from?

- The CP symmetry is violated in the SM, although not large enough to explain the matter-antimatter asymmetry
- Search for new sources of CP violation is ongoing in many sectors
- Large CP violation is proposed in BSM via chromoelectric dipole
 moment (CEDM) interaction of top quark
- The CP-odd physics observable with **largest sensitivity**: Levi-Civita tensors $\mathcal{O}_1 = \varepsilon(p_t, p_{\overline{t}}, p_{\ell}, p_{\overline{\ell}})$ $\mathcal{O}_3 = \varepsilon(p_h, p_{\overline{h}}, p_{\ell}, p_{\overline{\ell}})$
- Asymmetry (A_i): number of produced events, N, with a positive and negative value of the observable \mathcal{O}_i in top quark pairs
- Some BSM models [1] predict an asymmetry as large as 15% and 9% for \mathcal{O}_1 and \mathcal{O}_3
- Asymmetry (A_i) is linearly proportional to the CEDM

$$\mathcal{L} = \frac{g_{\rm S}}{2} \bar{\mathsf{t}} T^a \sigma^{\mu\nu} (a_{\rm t}^{\rm g} + i\gamma_5 d_{\rm t}^{\rm g}) \mathsf{t} G^{\mu\nu}$$
CP-odd CEDM

Asymmetry

$$A_i = \frac{N(\mathcal{O}_i > 0) - N(\mathcal{O}_i < 0)}{N(\mathcal{O}_i > 0) + N(\mathcal{O}_i < 0)}$$

CP violating anomalous top quark couplings

CMS-PAS-18-007

Analysis

- Analyzed data: 35.9 fb⁻¹ at 13 TeV
- Selection: dilepton $t\overline{t}$ events in **ee**, **e** μ , $\mu\mu$ channels
- kinematic event reconstruction applied
- Main backgrounds: tt (other channels), single top
- Maximum likelihood fit used to extract A_i, \mathcal{O}_i , and $\sigma_{t\bar{t}}$
- Measurement is limited by signal modelling (color reconnection, underlying event)
- CEDM is extracted from linear fit to the Asymmetry distribution
- Results are in agreement with SM

Results

	Asyn	Asymmetry and uncertainty ($\times 10^{-3}$)						
Physics observab	$e^{\pm}\mu^{\mp}$	e^+e^-	$\mu^+\mu^-$	Combined				
\mathcal{O}_1	$6.9~\pm~5.3$	$8.8~\pm~7.5$	0.6 ± 3.4	$2.4~\pm~2.8$				
\mathcal{O}_3	$6.1~\pm~5.3$	$4.1~\pm~7.5$	$-1.7~\pm~3.4$	$0.4~\pm~2.8$				
Physics observable	d_{tG}		CEDM (10 ⁻	$^{-18}$ g _s · cm)				
\mathcal{O}_1	$0.10 \pm 0.12(\text{stat})$	$\pm 0.12(\text{syst})$	$0.58 \pm 0.69 (stat)$	$\pm 0.70(\text{syst})$				
\mathcal{O}_3	$0.00 \pm 0.13(\text{stat})$	$\pm 0.10(syst)$	$-0.01 \pm 0.72 (state)$	$(t) \pm 0.58(syst)$				

Top Quark Rare Decays

Flavour Changing Neutral Current in top quark

- Top quark couples to an up-type quark (u or c) and a neutral boson (γ,Z,H,g)
- Forbidden at tree-level in SM
- Heavily suppressed at higher orders via GIM suppression (rate is not observable with current dataset)
- BSM can enhance FCNC up to ~ 10⁻⁴
 - Any observation of FCNC can indicate new physics
- FCNC probe can be done in both top quark production, and decay

Top quark in SM

[K. Agashe et al., arXiv:1311.2028]

Process	\mathbf{SM}	2HDM(FV)	2HDM(FC)	MSSM	RPV	\mathbf{RS}
$t \rightarrow Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	—	—	$\leq 10^{-7}$	$\leq 10^{-6}$	—
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t\to \gamma u$	4×10^{-16}	—	—	$\leq 10^{-8}$	$\leq 10^{-9}$	—
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to h u$	2×10^{-17}	6×10^{-6}	—	$\leq 10^{-5}$	$\leq 10^{-9}$	—
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Search for t \rightarrow u /c γ

- Analyzed data: 81 fb⁻¹ at 13 TeV
- Selection: exactly 1 photon, lepton and b-tagged jet and $E_{\rm T}^{\rm miss}$
- Only leptonic top quark decay is considered
- Models with left-handed (LH) and right-handed (RH) couplings are considered
- Neural Network (NN) classifier trained for each model using kinematics of the final state objects
- Dominating backgrounds: $\mathbf{e} \rightarrow \mathbf{y}$ fake and $\mathbf{V} + \mathbf{y} + \mathbf{j} \mathbf{e} \mathbf{t} \mathbf{s}$
 - o Data driven normalization estimate
 - o Data driven estimate for photons misidentification

<mark>S</mark> Phys. Lett. B 800 (2019) 135082

Results

The results are consistent with the background-only hypothesis

Limits are set on the LH and RH flavour-changing tqy coupling along with production cross section and branching ratio

Observable	Vertex	Coupling	Obs.	Exp.
$C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$	tuγ	LH	0.19	$0.22^{+0.04}_{-0.03}$
$\left C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}\right ^{2}$	tuγ	RH	0.27	$0.27^{+0.05}_{-0.04}$
$\left C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*}\right $	tcγ	LH	0.52	$0.57^{+0.11}_{-0.09}$
$\left C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)} \right ^{2}$	tcγ	RH	0.48	$0.59^{+0.12}_{-0.09}$
$\sigma(pp \to t\gamma)$ [fb]	tuγ	LH	36	52^{+21}_{-14}
$\sigma(pp \to t\gamma)$ [fb]	tuγ	RH	78	75^{+31}_{-21}
$\sigma(pp \to t\gamma)$ [fb]	tcγ	LH	40	49_{-14}^{+20}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	RH	33	52^{+22}_{-14}
$\mathcal{B}(t \to q\gamma) [10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t\to q\gamma)[10^{-5}]$	tuγ	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	LH	22	27^{+11}_{-7}
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	RH	18	28^{+12}_{-8}

S Phys. Lett. B 800 (2019) 135082

Search for $t \rightarrow qZ$

- Two channels are considered:
 - single top quark **FCNC production** (pp \rightarrow tZ)
 - top quark pair production with **FCNC decay** (t \rightarrow qZ)
- Looking for events with:
 - exactly 3 leptons= one opposite sign + same flavour pair
 - $1 \le jet(s) \le 3 \& W$ transverse mass < 300 GeV
- Dedicated BDT discriminants for each of 3 signal regions
- Set observed (expected) 95% CL limits on the branching ratio t \rightarrow qZ:

0.15

0.2

0.25

0.3

0.35

0.1

0.05

𝔅(t → cZ) < 0.045% (0.037%)

ɛ(t → uZ) < 0.024% (0.015%)

CMS-PAS-TOP-17-017

Search for $t \rightarrow qZ$

- Looking in top-quark pair events for one FCNC and one SM top quark decay:
 - three isolated leptons (e, μ)
 - at least two jets, (one b-tagged) and MET
- Only Z boson decays into charged leptons and leptonic W boson decays are considered as signal
- Events are reconstructed via χ^2 minimization of the kinematic properties of the final state objects
- The data are consistent with SM background contributions

Set observed (expected) 95% CL limits on the branching ratio $t \rightarrow qZ$:

𝔅(t → uZ) < 0.017% (0.024%)
𝔅(t → cZ) < 0.024% (0.032%)

Search for t \rightarrow qH(bb)

- Two channels are considered:
 - single top quark **FCNC production** (pp \rightarrow tH)
 - top quark pair production with FCNC decay (t \rightarrow qH)
- Looking for events with:
 - one isolated lepton (e, μ) and at least 3 jets (at least 2 of which are b-tagged)
- Dedicated **BDT discriminants** for **5 signal regions**

 $\mathcal{E}(t \to cH) < 0.47\% (0.44\%)$

Set observed (expected) 95% CL limits on the branching ratio

 $\mathcal{E}(t \rightarrow uH) < 0.47\% (0.34\%)$ $t \rightarrow qH$:

FCNC @LHC in summary

ATLAS and CMS limits

on: t → q(H/γ/g/Z)
branching rations
comparison to BSM
physics

- The full Run 2 dataset is still to be analyzed
- More interesting results to come, stay tuned!

Summary & Conclusion

- New W boson polarization measurements combination at 8 TeV
 - Improved polarization precision, tighter limits on the Wtb anomalous couplings
- Triple-differential angular decay rates in t-channel single top events
 - All angular coefficients are compatible with SM, limits set on anomalous couplings ratios and Polarization with no external constraints/ assumptions
- Top polarization and spin correlation is measured at 13 TeV (2016 data only)
 - Polarization is consistent with zero, spin correlation strengths are in agreement with SM prediction
- Forward-backward Asymmetry (A_{FB}) and CP violation are studied in top quark pair production
 - Results in agreement with SM expectation
- FCNC measurements are reaching some BSM effects sensitivity, no evidence found yet (but ...)
- Most measurements are limited by **systematic uncertainties**
 - ◆ Measurements with full run 2 data to improve the current precision and probe rare processes
- All measurements are so far **consistent** with the SM predictions

Stay tuned for more full Run2 analyses!

Backup

	ľ	()	ŀ	C		K			
U	Ν	I	۷	Е	R	S	I	Т	É		
U	Ν	Ι	V	Е	R	S	Ι	Т	Y		

 -			
	maa	ana	

Measurement	F_0	$F_{ m L}$	$F_{ m R}$
ATLAS $(\ell + jets)$	$0.709 \pm 0.012 \pm 0.015$	$0.299 \pm 0.008 \pm 0.013$	$-0.008 \pm 0.006 \pm 0.012$
CMS (e+jets)	$0.705 \pm 0.013 \pm 0.037$	$0.304 \pm 0.009 \pm 0.020$	$-0.009 \pm 0.005 \pm 0.021$
CMS (μ +jets)	$0.685 \pm 0.013 \pm 0.024$	$0.328 \pm 0.009 \pm 0.014$	$-0.013 \pm 0.005 \pm 0.017$
CMS (single top)	$0.720 \pm 0.039 \pm 0.037$	$0.298 \pm 0.028 \pm 0.032$	$-0.018\pm0.019\pm0.011$

Total Correlation

	ATLAS+CN	AS combination
	F_0	$F_{ m L}$
Fractions	0.693	0.315
Uncertainty category		
Samples size and backgrou	and determine	ation
Stat+bkg	0.009	0.006
Size of simulated samples	0.005	0.003
Detector modelling		
JES	0.004	0.002
JER	0.004	0.002
b tagging	0.001	0.001
JVF	0.001	0.001
Jet reconstruction	< 0.001	< 0.001
Lepton efficiency	0.002	0.001
Pileup	< 0.001	< 0.001
Signal modelling		
Top quark mass	0.003	0.004
Simulation model choice	0.006	0.005
Radiation and scales	0.005	0.004
Top quark $p_{\rm T}$	0.001	0.002
PDF	0.001	0.001
Single top method	0.001	< 0.001
Total uncertainty	0.014	0.011

Total Correlation

CMS

Triple-differential angular decay rates

Triple-differential angular decay rates

	Helicity	parameters	Coupling ratios		
Source	$\sigma(f_1)$	$\sigma(\delta_{-})/\pi$	$\sigma(\text{Re}[g_{\text{R}}/V_{\text{L}}])$	$\sigma(\mathrm{Im}[g_{\mathrm{R}}/V_{\mathrm{L}}])$	
Statistical	0.022	0.013	0.030	0.027	
Jets	0.029	0.007	0.039	0.009	
Leptons	0.014	0.002	0.017	< 0.001	
$E_{\mathrm{T}}^{\mathrm{miss}}$	<0.001	< 0.001	< 0.001	< 0.001	
Generator	0.027	0.006	0.030	0.010	
Parton shower and hadronisation	0.004	0.003	< 0.001	0.003	
PDF variations	0.008	0.004	< 0.001	< 0.001	
Background normalisation	< 0.001	< 0.001	< 0.001	< 0.001	
Multijet normalisation	<0.001	< 0.001	< 0.001	< 0.001	
W+jets shape	0.015	0.005	0.007	0.009	
Luminosity	<0.001	< 0.001	< 0.001	< 0.001	
MC sample sizes	0.009	0.006	< 0.001	0.013	
Other	< 0.001	< 0.001	< 0.001	< 0.001	
Total systematic uncertainty	0.044	0.010	0.061	0.017	
Total	0.049	0.017	0.068	0.032	

Angular coefficients

Diagonal elements of ${\mathbb C}$ matrix

Off-diagonal elements of ${\mathbb C}$ matrix

Indirect measurement

- Δφ distribution measured in eµ channel
 corrected in data for acceptance effect
- Data vs NLO discrepancy in both full and fiducial phase space is observed f_{SM}= 1.25 ±0.08 ≈ 3.2σ
 - Due to Missmodelling of top quark kinematics
- Dominant systematics uncertainty: generator radiation and scale settings
- None of the studied MC generators are able to reproduce the normalized Δφ distribution within the experimental errors
- NNLO: reduced discrepancy
- NNLO+EW: compatible within (large) uncertainty

SUSY: search for top squarks production: Excluded top squark mass: [170 - 230 GeV]

tt lepton+jets

MC uncertainty

Single t quark Z/y+jets

35.9 fb⁻¹ (13 TeV)

tt other channels

0.3

X

1400

W+jets

Type-3 e+jets

Data

Multijet

CNAS 1				
CIVIS		06	(2020)	1 /
	JHEP	00	(2020)	14

Source	Uncertainty in	Туре	Size	Affects
Jet energy scale	$\pm 1\sigma(p_{\rm T},\eta,A)$	N & S	7.6%	All
Jet energy resolution	$\pm 1\sigma(\eta)$	N & S	3.2%	All
Pileup	$\pm 1\sigma(n_{\rm PV})$	N & S	2.9%	All
Boosted μ +jets trigger eff.	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	N & S	0.4%	Type-1/2 μ +jets
Resolved μ +jets trigger eff.	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	N & S	0.1%	Type-3 μ +jets
Boosted e+jets trigger eff.	$\pm 1\sigma(p_{\mathrm{T}}, \eta)$	N & S	18.6%	Type-1/2 e+jets
Resolved e+jets trigger eff.	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	N & S	2.5%	Type-3 e+jets
Muon ident. eff.	$\pm 1\sigma(p_{\rm T}, \eta , n_{\rm PV})$	N & S	0.4%	All μ +jets
Muon PF isolation eff.	$\pm 1\sigma(p_{\rm T}, \eta ,n_{\rm PV})$	N & S	0.2%	Type-3 μ +jets
Electron ident. eff.	$\pm 1\sigma(p_{\rm T}, \eta)$	N & S	1.0%	All e+jets
b tag eff., b jets (loose)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	N & S	2.5%	Type-1/2
b tag eff., c jets (loose)	$\pm 1\sigma(p_{\mathrm{T}},\eta)$	N & S	1.2%	Type-1/2
b tag eff., light jets (loose)	$\pm 1\sigma(p_{\rm T},\eta)$	N & S	6.3%	Type-1/2
b tag eff., b jets (medium)	$\pm 1\sigma(p_{\rm T},\eta)$	N & S	1.9%	Type-3
b tag eff., c jets (medium)	$\pm 1\sigma(p_{\rm T},\eta)$	N & S	0.8%	Type-3
b tag eff., light jets (medium)	$\pm 1\sigma(p_{\rm T},\eta)$	N & S	1.2%	Type-3
t tag eff. (merged)	$\pm 1\sigma(p_{\mathrm{T}})$	N & S	1.6%	Type-1
t tag eff. (semimerged)	$\pm 1\sigma(p_{\rm T})$	N & S	2.2%	Type-1
t tag eff. (not merged)	$\pm 1\sigma(p_{\rm T})$	N & S	2.8%	Type-1
ISR scale	$\pm 1\sigma$	N & S	2.2%	tī
FSR scale	$\pm 1\sigma$	N & S	2.6%	tĪ
ME-PS matching (h_{damp})	$\pm 1\sigma$	N & S	2.5%	tĪ
CUETP8M2T4 tune	$\pm 1\sigma$	N & S	2.4%	tī
Color reconnection	$\pm 1\sigma$	S	2.8%	tī
b fragmentation	$\pm 1\sigma(x_{\rm b})$	N & S	3.7%	tī
b branching fraction	$\pm 1\sigma$	N & S	1.0%	tī
Top quark $p_{\rm T}$ reweighting	$\pm 1\sigma(p_{\rm T}^{\rm gen,t},p_{\rm T}^{\rm gen,\bar{t}})$	S	2.5%	tī
PDF/α_S variation	NNPDF 3.0	S	1.5%	tī
Renormalization scale $\mu_{\rm R}$	$\frac{1}{2}\mu_{ m R} ightarrow 2\mu_{ m R}$	S	2.6%	tī
Factorization scale $\mu_{\rm F}$	$\frac{1}{2}\mu_{\rm F} \rightarrow 2\mu_{\rm F}$	S	1.5%	tī
Combined $\mu_{\rm R}/\mu_{\rm F}$ scale	$\frac{1}{2} \rightarrow 2(\mu_{\rm R} \text{ and } \mu_{\rm F})$	S	3.8%	tī MC
Integrated luminosity	±2.5%	Ν		All
	$\pm 1\%$	N & S	_	All f_{ap*}/f_{am*}
R_{W+iets}	$\pm 10\%$	Ν	_	All W+jets MC
$R_{\rm QCD}^{t/C'/R}$ (20 params total)	$\pm 1\sigma$ (stat)	Ν	—	Multijet

m_r [GeV]

CP violating anomalous top quark couplings $YORK_{UNIVERSITY}$

	Uncertainty ($\times 10^{-3}$)							
	μ	$^+\mu^-$	e	$^+e^-$	e	$^{\pm}\mu^{\mp}$	Combined	
Source	up	down	up	down	up	down	up	down
Muon energy	2.3	-2.3	—	_	0.1	-0.1	0.5	-0.5
Electron scale and smearing	_	_	1.2	-1.2	0.2	-0.2	0.3	-0.3
JES	2.3	-2.3	1.9	-1.9	0.1	-0.1	0.7	-0.7
JER	1.2	-1.2	2.0	-2.0	0.3	-0.3	0.6	-0.6
Limited number of simulated BG events	2.3	-2.3	2.9	-2.9	0.6	-0.6	0.7	-0.7
ME–PS matching	0.8	-0.8	0.8	-0.8	0.3	-0.3	0.4	-0.4
Color reconnection	1.0	-1.0	1.9	-1.9	1.6	-1.6	1.5	-1.5
Underlying event	1.4	-1.4	0.6	-0.6	1.4	-1.4	1.4	-1.4
ISR	0.3	-0.3	1.5	-1.5	0.2	-0.2	0.3	-0.3
FSR	0.6	-0.6	1.0	-1.0	0.8	-0.8	0.7	-0.7
Hadronization	1.7	-1.7	2.0	-2.0	0.6	-0.6	0.9	-0.9
Charge misidentification		-0.1	0.8	-0.8	0.4	-0.4	0.3	-0.3
Total systematic uncertainty	5.0	-5.0	5.6	-5.6	2.6	-2.6	2.8	-2.8

		Uncertainty ($\times 10^{-3}$)							
	μ	$\mu^+\mu^-$		e^+e^-		$\mathrm{e}^\pm\mu^\mp$		Combined	
Source	up	down	up	down	up	down	up	down	
Muon energy	1.0	-1.0	_	_	0.2	-0.2	0.3	-0.3	
Electron scale and smearing	_	_	1.1	-1.1	0.2	-0.2	0.2	-0.2	
JES	0.7	-0.7	0.6	-0.6	0.2	-0.2	0.3	-0.3	
JER	0.3	-0.3	0.7	-0.7	0.2	-0.2	0.2	-0.2	
Limited number of simulated BG ev	ents 2.3	-2.3	2.9	-2.9	0.6	-0.6	0.7	-0.7	
ME–PS matching	1.5	-1.5	1.4	-1.4	0.7	-0.7	0.9	-0.9	
Color reconnection	0.9	-0.9	3.8	-3.8	1.0	-1.0	1.1	-1.1	
Underlying event	1.0	-1.0	0.9	-0.9	1.1	-1.1	1.0	-1.0	
ISR	0.5	-0.5	1.8	-1.8	0.2	-0.2	0.3	-0.3	
FSR	0.3	-0.3	1.9	-1.9	0.6	-0.6	0.6	-0.6	
Hadronization	0.2	-0.2	0.5	-0.5	0.3	-0.3	0.3	-0.3	
Charge misidentification	0.1	-0.1	0.8	-0.8	0.4	-0.4	0.3	-0.3	
Total systematic uncertainty	3.5	-3.5	6.0	-6.0	2.0	-2.0	2.2	-2.2	

Δμ

0

0.01

Search for $t \rightarrow q\gamma$

Observable Coupling Exp. Obs. Vertex $+ C^{(13)*}$ $0.22^{+0.04}$ (13)*0.19 LH tuγ 'n₩ úΒ -0.03Pre-fit impact on μ : $0.27^{+0.05}_{-0.04}$ $C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}$ RH 0.27 tuγ $C^{(23)*1}$ 0.57^{+0.11} (23)*Post-fit impact on μ : LH 0.52 $tc\gamma$ ú₩ -0.09úΒ $0.59^{+0.12}$ $C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}$ RH 0.48 $tc\gamma$ -0.09 52^{+21} LH 36 $\sigma(pp \to t\gamma)$ [fb] tuγ -1475+31 $\sigma(pp \to t\gamma)$ [fb] RH 78 tuγ 49^{+20} $\sigma(pp \to t\gamma)$ [fb] LH 40 $tc\gamma$ 52⁺²² $\sigma(pp \to t\gamma)$ [fb] RH 33 $tc\gamma$ $4.0^{+1.6}$ $\mathcal{B}(t \to q\gamma) [10^{-5}]$ LH 2.8tuγ $5.9^{+2.4}$ $\mathcal{B}(t \to q\gamma) [10^{-5}]$ RH 6.1 tuγ -1.6 27+11 $\mathcal{B}(t \to q\gamma) [10^{-5}]$ LH 22 $tc\gamma$ 28_{-8}^{+12} $\mathcal{B}(t \to q\gamma) [10^{-5}]$ RH 18 $tc\gamma$

 p_{τ}^{γ} [GeV]

-2 -1.5 -1 -0.5

0

 $(\hat{\theta} - \theta_0) / \sigma_0$

0.5

1.5

1

2

Z+jets: scale uncertainties

tī: matrix element

tī: initial state radiation

Z+jets: heavy flavour fraction Jet energy resolution: effective NP 4

 E_{τ}^{miss} : soft-term resolution (parallel)

 $t\bar{t}$: final state radiation

Single top: final state radiation

background estimation $e \rightarrow \gamma$

energy scale: η intercalibration non-closure high-E Jet energy resolution: effective NP 6

 $\theta = \theta_0 + \sigma_0$

 $\theta = \hat{\theta} + \hat{\sigma}$

Events / 20 GeV

10⁶

ATLAS: Indirect measurement

- Δφ distribution measured in eµ channel
 - corrected in data for acceptance effect
- Data vs NLO discrepancy in both full and fiducial phase space is observed f_{SM}= 1.25 ±0.08 ≈ 3.2σ
 - Due to Missmodelling of top quark kinematics
- Dominant systematics uncertainty: generator radiation and scale settings
- None of the studied MC generators are able to reproduce the normalized Δφ distribution within the experimental errors
- NNLO: reduced discrepancy
- NNLO+EW: compatible within (large) uncertainty

SUSY: search for top squarks production: Excluded top squark mass: [170 - 230 GeV]

