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Question 1: how to represent our data?
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One answer: as an image!

Images
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digital image!
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nothing like a the Jet Image
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Images and Beyond
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G. Kasieczka and T. Plehn et al., SciPost Phys. 7, 014 (2019)

| Caveat: same inputs, but not same
amount of training resources
(human time and CPU time)
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Classification in Practice

(13 TeV)
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Classification in Practice
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One last comment: low-level learning
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Generative models

You will hear all about this in Anja’s talk, but |
wanted to quickly highlight this exciting possibility.

What is a generative model?
Answer: A function from noise to structure.



Generative models

These are being used for parton showers, background
estimation, distribution subtraction, unfolding, ...

< 1.10 ATLAS Simulation Preliminary + Geant4
g Y, 0.20 <Inl <0.25
. W ; g5lx?/ndf= 6.1 (GAN) b GAN
These are already being £
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and may be able to
improve top physics 0.90|
analyses in the future!
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See also M. Paganini, L. de Oliveira, and B. Nachman, PRD 97 (2018) 014021
M. Paganini, L. de Oliveira, and B. Nachman, PRL 120 (2018) 042003
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Why can’t we learn directly from data?

Why can't | just pay some physicists to label events
and then train a neural network using those labels??

Answer: this is not cats-versus-dogs ... thanks to quantum
mechanics it is not possible to know what happened.


http://pixabay.com
http://pixabay.com

What is the problem?

The data are unlabeled and in the best case, come to us
as mixtures of two classes (“signal” and “background”).

Mixed Sample 1 Mixed Sample 2

(we don't get to observe the color of the circles)



I Weak supervision:
Classification Without Labels
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E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51
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CWola in action:
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Anomaly
Detection




Anomaly Detection

Weak supervision was motivated by inaccurate models;
what if we do not even know what we are looking tor?

We can use machine learning to ask if there
are anomalous features in our data.

(Boosted) top quarks have been a key benchmark
to study the performance of these new tools.



Unsupervised Anomaly Detection

M. Farinia, Y. Nakai, D. Shih,
PRD 101, 075021 (2020)
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Unsupervised Anomaly Detection

M. Farinia, Y. Nakai, D. Shih, T. Heimel, et. al.
PRD 101, 075021 (2020) SciPost Phys. 6, 030 (2019)
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Weakly Supervised Anomaly Detection

One feature of unsupervised learning is that it gives you
access to events with low p(x). However, the signal may
have high p(x) but p(x|signal) is far from p(x|background).

Semi-supervised methods may be useful in this case.



Weakly Supervised Anomaly Detection
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Collision data results New

Fun fact: this plot required training 10k NNs
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Yes, ML can be
used also for SM
measurements! .
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Could we use all of the information?

For our measurements of top quark event properties, would
it be possible to use all of the information in the event?

...all hadrons, their 4-vectors, charge, ...



A hyper challenge

Key challenge and opportunity:
& hyper spectral data

Image inspired by JHEP 02 (2009) 007

Not to scale!




A hyper challenge

Key challenge and opportunity:
& hyper spectral data

We detect these
particles with
O(100 M)
readout channels




Example: Unfolding

Want this Measure this




Example: Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

Want this |Measure this




Example: Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !



Example: Unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !

However: we have simulators that we can
use to sample from p(meas. | true)

— Simulation-based (likelihood-free) inference



Reweighting

One solution is based on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.



Reweighting

One solution is based on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.

What if we don't (and can't easily) know g and p?



Classification for reweighting

Fact: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)



Example: electron-positron collisions
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Achieving precision
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Achieving precision

Could we use this for systematic variations in top quark
simulations”? Maybe we would not need N different
detector simulated samples it we can full phase space
reweight one to the other at particle-level.




Unfold by iterating: OmniFold

Measured Ideal

-

One OmniFold, compute any observable.

(see the paper for details)

Natural

A. Andreassen, P. Komiske, E. Metodiey,
BPN, J. Thaler, PRL 124 (2020) 182001

Simulation Generation
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lterative reweighting

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001
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resus Q)

OmniFold is:

- Unbinned

- Maximum likelihood

- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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How to get around data/MC diffs?

A variety of recent proposals to cope with data/MC
differences. This is related to anomaly detection
and weak supervision, but the goal here is not to be
completely model independent.




Example 1: Automated ABCD Method

N

One example: a common strategy for background
estimation is the ABCD method. Is there a way to pick the
two defining features automatically instead of by hand?

We need the two features to be good at distinguishing
signal (e.g. top events) from background, but also they
need to be independent of each other.



Example 1: Automated ABCD Method
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Example 2: penalize learning data/MC

J. Clavijo, P. Glaysher, J. Katzy, 2005.00568
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See also CMS, 1912.12238
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Conclusions and outlook

Deep learning has a great
potential to enhance,
accelerate, and
empower top physics.

Disclaimer: | have given
you a biased perspective of
new developments!

There is still work to do on all fronts to consider top quark
events holistically in their natural high dimensionality!



Interested in learning more?

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to
incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of
topics to be as useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of
categories is chosen in order to be as useful as possible. Note that papers may be referenced in more than one category. The fact that
a paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.
Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think
should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next
paper. If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.

¢ Reviews.
o Modern reviews

» Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning [DOI]
» Deep Learning and its Application to LHC Physics
» Machine Learning in High Energy Physics Community White Paper

= Machine learning at the energy and intensity frontiers of particle physics

= Machine learning and the physical sciences [DOI]

() https://iml-wg.github.io/HEPML-LivingReview/


https://github.com/iml-wg/HEPML-LivingReview

Questions?




