Machine learning models to generate top events

Anja Butter

ITP, Universität Heidelberg

arXiv:1907.03764, 1912.08824, 1912.00477, 2006.06685, and 2008.06545

with Armand Rousselot, Marco Bellagente, Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, and

Ramon Winterhalder

The HEP trinity

Theory

Fundamental Lagrangian

Perturbative QFT

Standard Model vs. new physics

• Matrix elements, loop integrals

Experiment

Complex detector

• ATLAS, CMS, LHCb, ALICE, ...

Reconstruction of individual events

• Big data: jet images, tracks, ...

Precision simulations

First-principle Monte Carlo generators

- Simulation of parton/particle-level events
- Herwig, Pythia, Sherpa, Madgraph, ...

Detector simulation

- Geant4, PGS, Delphes, ...
- \Rightarrow Unweighted event samples

Neural networks for precision simulations

Problems in MC simulations

- Event generation:
 - High-dimensional phase space
 - Low unweighting efficiency
 - Higher order: exponential growth in computing time
- Highly complex full detector simulation \rightarrow very slow
- HL-LHC: factor 25 in data \rightarrow need higher precision
- Limited resources: Precision vs. computing time

Advantages of neural networks

- Flexible parametrisation
- Interpolation properties
- Fast evaluation

Possibilities for ML in event generation

Event generation

- Generating 4-momenta
- Z > II, pp > jj, $pp > t\bar{t}$ +decay

[1901.00875] Otten et al. VAE & GAN [1901.05282] Hashemi et al. GAN [1903.02433] Di Sipio et al. GAN [1903.02556] Lin et al. GAN [1907.03764, 1912.08824] Butter et al. GAN [1912.02748] Martinez et al. GAN

Monte Carlo integration

- Estimating matrix element
- Neural importance sampling

[1707.00028] Bendavid, Regression & GAN [1810.11509] Klimek and Perelstein [1912.11055] Bishara and Montull Regression [2001.05478] Bothmann et al. NF [2001.05486, 2001.10028] Gao et al. NF [2002.07516] Badger and Bullock Regression

Detector simulation

- Jet images
- Fast shower simulation in calorimeters

[1701.05927] de Oliveira et al. GAN [1705.02355, 1712.10321] Paganini et al. GAN [1802.03325, 1807.01954] Erdmann et al. GAN [1805.00850] Musella et al. GAN [ATL-SOFT-PROC-2019.007] ATLAS VAE & GAN [1909.01359] Carazza and Dreyer GAN [2005.05334] Buhmann et al. VAE

Unfolding

 Detector to parton/particle level distributions

[1806.00433] Datta et al. GAN

[1911.09107] Andreassen et al.

[1912.0047] Bellagente et al. GAN

[2006.06685] Bellagente et al. NF

NO claim to completeness! Review: Generative Networks for LHC events [2008.08558]

1. Generate phase space points

2. Calculate event weight

$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots, p_n) \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling ightarrow optimal for $w \approx 1$

... or train generative network directly on events

Early stage of research. Possible gains:

- Generate more statistics
- Use network to sample phase space (similar to NF)
- Ship model instead of samples (profit from fast evaluation of NN)
- · Use conditional generative network to interpolate between measured samples
- Use invertible architectures for unfolding
- Replace fast detector simulations

A generative model

- Generative Adversarial Networks (GAN)
- Data: true events {*x*_{*T*}} vs. generated events {*x*_{*G*}}
- Discriminator distinguishes $\{x_T\}, \{x_G\} [D(x_T) \rightarrow 1, D(x_G) \rightarrow 0]$

$$L_{D} = \left\langle -\log D(x) \right\rangle_{x \sim P_{T}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{G}} \xrightarrow{D(x) \to 0.5} -2\log 0.5$$

• Generator fools discriminator $[D(x_G) \rightarrow 1]$

$$L_G = \langle -\log D(x) \rangle_{x \sim P_G}$$

 \Rightarrow New statistically independent samples

Why GANs? Features, problems and solutions

- + Generate better samples than VAE
- + Large community working on GANs
- Unstable training

Solutions

- Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al., ...]
- Modified training objective:
 - Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]
 - Least square GAN (LSGAN) [Martinez et al., ...]
 - MMD-GAN [Otten et al., ...]
 - MSGAN [Datta et al., ...]
 - Cycle GAN [Carazza et al., ...]
- Use of symmetries [Hashemi et al., ...]
- Whitening of data [Di Sipio et al., ...]
- Feature augmentation [Alanazi et al., ...]

What is the statistical value of GANned events?

- Example: 1D camel function
- Compare Sample vs. GAN vs. 5 param.-fit (mean, width, relative height)
- Evaluation on quantiles

$$\mathsf{MSE} = rac{1}{N_{\mathsf{quant}}} \sum_{j=1}^{N_{\mathsf{quant}}} \left(x_j - rac{1}{N_{\mathsf{quant}}}
ight)^2$$

Convergence to amplification factor 2.5 for 20 quantiles

What is the statistical value of GANned events?

- ٠ Example: Sphere in 5 dimensions
- Sum over 5-dimensional quantiles ۲
- Amplification factor increases for sparse guantiles:
 - 3 for 3⁵ quantiles
 15 for 6⁵ quantiles

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t\bar{t} \rightarrow 6$ jets [1907.03764]
- 18 dim output [fix external mass, no mom. cons.]
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t\bar{t} \rightarrow 6$ jets [1907.03764]
- 18 dim output
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]
- Sharp phase-space structures, not using Γ_W

$$MMD^{2}(P_{T}, P_{G}) = \langle k(x, x') \rangle_{x, x' \sim P_{T}} + \langle k(y, y') \rangle_{y, y' \sim P_{G}}$$
$$- 2 \langle k(x, y) \rangle_{x \sim P_{T}, y \sim P_{G}}$$

How to GAN LHC events

Idea: generate hard process

- Realistic LHC final state $t\bar{t}
 ightarrow 6$ jets [1907.03764]
- 18 dim output
- Flat observables precise
- Systematic undershoot in tails [10-20% deviation]
- Sharp phase-space structures, not using Γ_W [MMD-loss]
- 2D correlations

Reaching precision

- 1. Representation p_T, η, ϕ
- 2. Momentum conservation
- 3. Resolve $\log p_T$
- 4. Regularization: spectral norm
- 5. Batch information
- $\rightarrow~1\%$ precision \checkmark

Next step: automization

W + 2 jets

How to GAN event subtraction

Idea: sample based subtraction of distributions [1912.08824]

- $1\,$ Consistent multidimensional difference between two distributions
- 2 Beat bin-induced statistical uncertainty [interpolation of distributions]

$$\Delta_{B-S} = \sqrt{n_B^2 N_B + n_S^2 N_S} > \mathsf{max}(\Delta_B, \Delta_S)$$

- Many applications:
 - Soft-collinear subtraction, multi-jet merging, on-shell subtraction
 - Background subtraction [4-body decays → preserves correlations]

Example I: Z pole

- Training data:

 - $pp \rightarrow e^+e^ pp \rightarrow \gamma \rightarrow e^+e^-$
 - 1 M events per dataset, MadGraph5
- Generated events: Z-Pole + interference

Example II: Dipole subtraction

- Theory uncertainties \rightarrow limiting factor for HL-LHC
- Higher order: Subtract diverging Catany Seymour Dipole from real emission term
- 1 M events per dataset, SHERPA

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Detector simulation

- Typical Markov process
- Prior dependent inversion possible [Datta et al.]
- Aim: unfolding multidimensional phase space

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

• GAN: no connection between input and discr. \rightarrow use fully conditional GAN (FCGAN)

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

- Use fully conditional GAN (FCGAN)
- Inversion works \checkmark

Eq.(7):
$$p_{T,j_1} = 30 \dots 100 \text{ GeV}$$
 (~ 88%)
Eq.(8): $p_{T,j_1} = 30 \dots 60 \text{ GeV}$ and $p_{T,j_2} = 30 \dots 50 \text{ GeV}$ (~ 38%)

How to GAN away detector effects

Idea: invert Markov process [1912.00477]

Reconstruct parton level $pp \rightarrow ZW \rightarrow (II)(jj)$

- Use fully conditional GAN (FCGAN)
- Inversion works \checkmark
- BSM injection √
 - train: SM events
 - test: 10% events with W' in s-channel

Curing shortcomings with invertible structure

- cGAN calibration curves: mean correct, distribution too narrow
- INN: Normalizing flow with fast evaluation in both directions

Conditional invertible neural networks

Condition INN on detector data [2006.06685]

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r$$

$$\begin{aligned} \text{Minimizing } L &= -\left\langle \log p(\theta | x_p, x_d) \right\rangle_{x_p \sim P_p, x_d \sim P_d} \\ &= \left\langle \frac{||g(x_p, f(x_d)))||_2^2}{2} - \log \left| \frac{\partial g(x_p, f(x_d))}{\partial x_p} \right| \right\rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta) \end{aligned}$$

 \rightarrow calibrated parton level distributions

Ania Butter

Conditional invertible neural networks

Condition INN on detector data [2006.06685]

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r$$

- Use detector information x_d of arbitrary dimension
- Unfold inclusive channels
- Cross check 2/3/4 jet exclusive channels

Summary

- We can boost standard event generation using ML
- GANs can learn underlying distributions from event samples
- Possibilities to stabilize GAN training: gradient penalty, WGAN-GP, LSGAN,...
- MMD improves performance for special features
- Successful sample based subtraction implemented
- Applications: background subtraction, soft-collinear subtraction,
- Unfold high-dimensional detector level distributions with cGANs and INN
- Stable under insertion of new data, proper calibration achieved by cINN

Important next steps

1. Quantify uncertainties (eg. Bayesian networks)

- including correlations
- 2. High precision

3. Automization

• move away from hand engineered networks