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Recent explosion of ML tools in particle physics 

⇒ Common goal to classify among different (un)known 
physical processes ⟺ to learn/approximate likelihoods 

Crucial to understand physics learned by the machine 

⇒ Helps to understand systematics & validate assumptions 
(i.e. MC, control region dependence) 

Top jets well defined (and understood?) test case 

Introduction
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Input: representation of model p(x), finite number of 
examples {xi} sampled/computed/generated from p 

Output: mapping f(x→z) minimizing a loss function 

Common example: model of two distributions                  
with loss function  

⇒ f  will approximate 

What is the physics contained in f(x)? How is it sensitive to 
biases & systematics of {xi}? 
What has the machine learned? 

Supervised ML                                                
a.k.a. Universal Function Approximation

(cross-entropy)

(likelihood ratio)

see e.g. B. Nachman, 1909.03081

L = �[si log(zi) + (1� si) log(1� zi)]

<latexit sha1_base64="KQTGLpZoZjJdi9FeYXXACuBcKSU=">AAACHXicbVDLSsNAFJ34rPUVdelmsAgVaUmk4AOEghsXLirYByQhTKaTdujkwcxEqKE/4sZfceNCERduxL9xkmahrQcGDufcy51zvJhRIQ3jW1tYXFpeWS2tldc3Nre29Z3djogSjkkbRyziPQ8JwmhI2pJKRnoxJyjwGOl6o6vM794TLmgU3slxTJwADULqU4ykkly9YQdIDjFi8AZewhq0hEuhzaJB9cGlR/AYVs2ayFiumbVMdVy9YtSNHHCemAWpgAItV/+0+xFOAhJKzJAQlmnE0kkRlxQzMinbiSAxwiM0IJaiIQqIcNI83QQeKqUP/YirF0qYq783UhQIMQ48NZllEbNeJv7nWYn0z5yUhnEiSYinh/yEQRnBrCrYp5xgycaKIMyp+ivEQ8QRlqrQsirBnI08TzondbNRP79tVJoXRR0lsA8OQBWY4BQ0wTVogTbA4BE8g1fwpj1pL9q79jEdXdCKnT3wB9rXD3mjnms=</latexit>

f(x) ⇠ p0(x)/p1(x)

1 + p0(x)/p1(x)

<latexit sha1_base64="iAJIrPrXfi0J+8fh1ullWgNVbCU=">AAACGHicbZDLSgMxFIYz9VbrbdSlm2ARKkI7IwUvq4IblxXsBTplyKSZNjTJDElGLEMfw42v4saFIm67821M21nY1gMhP99/Dsn5g5hRpR3nx8qtrW9sbuW3Czu7e/sH9uFRU0WJxKSBIxbJdoAUYVSQhqaakXYsCeIBI61geDf1W09EKhqJRz2KSZejvqAhxUgb5NuVsPR8Dj1FOfRCiXAa+44hldh3zTVO3YtF4NtFp+zMCq4KNxNFkFXdtydeL8IJJ0JjhpTquE6suymSmmJGxgUvUSRGeIj6pGOkQJyobjpbbAzPDOnBMJLmCA1n9O9EirhSIx6YTo70QC17U/if10l0eN1NqYgTTQSePxQmDOoITlOCPSoJ1mxkBMKSmr9CPEAmH22yLJgQ3OWVV0XzsuxWyzcP1WLtNosjD07AKSgBF1yBGrgHddAAGLyAN/ABPq1X6936sr7nrTkrmzkGC2VNfgE0wZ1d</latexit>

ps(x) , s = 0 , 1

<latexit sha1_base64="wXkSyQA59KQF+C4JAc2/JxFwEPo=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQoZRECj5AKLhxWcE+oAlhMp20QyeTMDMRQ2h/xY0LRdz6Ie78G6dtFtp64HIP59zL3Dl+zKhUlvVtFNbWNza3itulnd29/QPz8Kgjo0Rg0sYRi0TPR5IwyklbUcVILxYEhT4jXX98O/O7j0RIGvEHlcbEDdGQ04BipLTkmeXYk9WnM6dWm8obSzenZntmxapbc8BVYuekAnK0PPPLGUQ4CQlXmCEp+7YVKzdDQlHMyKTkJJLECI/RkPQ15Sgk0s3mx0/gqVYGMIiELq7gXP29kaFQyjT09WSI1EguezPxP6+fqODSzSiPE0U4XjwUJAyqCM6SgAMqCFYs1QRhQfWtEI+QQFjpvEo6BHv5y6ukc163G/Wr+0aleZ3HUQTH4ARUgQ0uQBPcgRZoAwxS8AxewZsxNV6Md+NjMVow8p0y+APj8wfgBpL3</latexit>

L(f, {xi})

<latexit sha1_base64="TKTADZ8IZ8NNa1NTlsgxMJa+mAQ=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKIgUfq4IbFy4q2Ac0IUymk3boZBJmJmIJ2fgrblwo4tbPcOffOGmz0NYDFw7n3Mu99/gxo1JZ1rdRWlpeWV0rr1c2Nre2d8zdvY6MEoFJG0csEj0fScIoJ21FFSO9WBAU+ox0/fF17ncfiJA04vdqEhM3RENOA4qR0pJnHjghUiOMGLytBadOCh89Cp3sxDOrVt2aAi4SuyBVUKDlmV/OIMJJSLjCDEnZt61YuSkSimJGsoqTSBIjPEZD0teUo5BIN50+kMFjrQxgEAldXMGp+nsiRaGUk9DXnfm5ct7Lxf+8fqKCCzelPE4U4Xi2KEgYVBHM04ADKghWbKIJwoLqWyEeIYGw0plVdAj2/MuLpHNWtxv1y7tGtXlVxFEGh+AI1IANzkET3IAWaAMMMvAMXsGb8WS8GO/Gx6y1ZBQz++APjM8f39eVSg==</latexit>
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f(x) can be thought of as mapping (compression) from 
target space X ∋ x to latent space Z ∋ z, i.e. between 
distributions 

⇒ ‘Inverse’ of f : f −1(z → x) can generate artificial data     
{x’i} in X  by sampling from latent space Z 

⇒ Can learn f, f −1 by maximizing 

Model assumptions encoded as priors p′(z) in latent space 
Z - possibility of unsupervised ML 
Can infer on physics in f through latent space 
representation (and use it for classification) 

Bayesian generative models

(Bayes theorem)
p({xi}|f, f�1, p0)

<latexit sha1_base64="d5FtdFBqfYJxo3gMSmS7wz58yV8=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARK9SSSMHHquDGZQX7gCaWyXTSDp0kw8xELGkW/oobF4q49Tfc+TdO2yy0euDC4Zx7ufcejzMqlWV9GbmFxaXllfxqYW19Y3PL3N5pyigWmDRwxCLR9pAkjIakoahipM0FQYHHSMsbXk381j0RkkbhrRpx4gaoH1KfYqS01DX3eMlJHrrUScd+2b9LTuy0zI+Ou2bRqlhTwL/EzkgRZKh3zU+nF+E4IKHCDEnZsS2u3AQJRTEjacGJJeEID1GfdDQNUUCkm0zvT+GhVnrQj4SuUMGp+nMiQYGUo8DTnQFSAznvTcT/vE6s/HM3oSGPFQnxbJEfM6giOAkD9qggWLGRJggLqm+FeIAEwkpHVtAh2PMv/yXN04pdrVzcVIu1yyyOPNgHB6AEbHAGauAa1EEDYDAGT+AFvBqPxrPxZrzPWnNGNrMLfsH4+AaSkZUn</latexit>

<latexit sha1_base64="vld0NHPucuGWKMnLcyiVAXhwgLk="></latexit>

p(x) ! p(z|x)f



1st Example

Classification in latent space with Variational Autoencoders
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VAE architecture

Encoder: mapping {xi} into p(z|x) in latent space 

Latent space distribution: Gaussian(zi,σi) with normal prior p′ 

Decoder: generative model (likelihood approximator)  

Classifier: posterior distribution p(z|x) in latent space

p(
z|

x)

latent space

NN 
Decoder (f −1)

NN 
Encoder ( f )xi x’i

zi

σi

zi

-

_

D. P Kingma, M. Welling, 1312.6114



7

VAE architecture

Loss function 

Kullback-Leibler divergence 
with respect to prior, 
ensures clustering in Z

r ~ 1 regulates  
component collapse 
in Encoder

R ≫ 1 avoids 
over-regularization 
from KL 
(~ β-VAE) reconstruction  

loss of Decoder

<latexit sha1_base64="iRPbwu+WAL9BkbZI80UTUBlM/oY="></latexit>

L = R ·MSE(xi � x0
i) +DKL(p(z|x)||p0(z)) + r · log �i

p(
z|

x)

latent space

NN 
Decoder (f −1)

NN 
Encoder ( f )xi x’i

zi

σi

zi

-

Higgins et al., ICLR 2017

see e.g. Lucas et al., ICLR 2019

D. P Kingma, M. Welling, 1312.6114
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VAE generative model of (global) jet observables

⇒ Define several global jet observables, e.g. jet mass (mj), 
N-subjettiness variables (τΝ), … 

⇒ Train VAE on ensemble of jets                                        
→ p(z|x) (latent representation of data) 

⇒ Scan over the latent space 

⇒ Pass these values through the decoder                          
→ p(x|z)  (generative model)  

+ Cut on latent variable (z) can also be used to define a 
classifier

J. Thaler & K. Van Tilburg, 1011.2268

see also Cheng et al., 2007.01850
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Example VAE model: top jets

1D latent dimension VAE trained on mixed sample (S+B) 
using  

B: QCD (light quark & gluon) dijets 
S: 

⇒ Jet observable reconstruction: Encoder Input {xi} 
pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5

mj , (⌧2/⌧1)j , (⌧3/⌧2)j

<latexit sha1_base64="ItaMbvr/pZNrFWEnddw2Onp/dMc=">AAACEnicbZDLSgMxFIYz9VbrbdSlm2ARWpA6UwteVgU3LivYC7TDkEkzbWwmMyQZoQx9Bje+ihsXirh15c63MZ0OqK0HQn6+/xyS83sRo1JZ1peRW1peWV3Lrxc2Nre2d8zdvZYMY4FJE4csFB0PScIoJ01FFSOdSBAUeIy0vdHV1G/fEyFpyG/VOCJOgAac+hQjpZFrlgP37hiWegrFbvUkvezyDzqdoapGrlm0KlZacFHYmSiCrBqu+dnrhzgOCFeYISm7thUpJ0FCUczIpNCLJYkQHqEB6WrJUUCkk6QrTeCRJn3oh0IfrmBKf08kKJByHHi6M0BqKOe9KfzP68bKP3cSyqNYEY5nD/kxgyqE03xgnwqCFRtrgbCg+q8QD5FAWOkUCzoEe37lRdGqVuxa5eKmVqxfZnHkwQE4BCVggzNQB9egAZoAgwfwBF7Aq/FoPBtvxvusNWdkM/vgTxkf344pm4U=</latexit>
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INARY
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Example VAE model: top jets

1D latent dimension VAE trained on mixed sample (S+B) 
using  

B: QCD (light quark & gluon) dijets 
S: 

⇒ Jet observable reconstruction: Decoder Output {x’i} 
pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5

(Model with 2 dense layers of 100 nodes for encoder & decoder, 
with AdaDelta optimization, SeLu activation, trained for 100 epochs)

mj , (⌧2/⌧1)j , (⌧3/⌧2)j

<latexit sha1_base64="ItaMbvr/pZNrFWEnddw2Onp/dMc=">AAACEnicbZDLSgMxFIYz9VbrbdSlm2ARWpA6UwteVgU3LivYC7TDkEkzbWwmMyQZoQx9Bje+ihsXirh15c63MZ0OqK0HQn6+/xyS83sRo1JZ1peRW1peWV3Lrxc2Nre2d8zdvZYMY4FJE4csFB0PScIoJ01FFSOdSBAUeIy0vdHV1G/fEyFpyG/VOCJOgAac+hQjpZFrlgP37hiWegrFbvUkvezyDzqdoapGrlm0KlZacFHYmSiCrBqu+dnrhzgOCFeYISm7thUpJ0FCUczIpNCLJYkQHqEB6WrJUUCkk6QrTeCRJn3oh0IfrmBKf08kKJByHHi6M0BqKOe9KfzP68bKP3cSyqNYEY5nD/kxgyqE03xgnwqCFRtrgbCg+q8QD5FAWOkUCzoEe37lRdGqVuxa5eKmVqxfZnHkwQE4BCVggzNQB9egAZoAgwfwBF7Aq/FoPBtvxvusNWdkM/vgTxkf344pm4U=</latexit>
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Example VAE model: top jets

1D latent dimension VAE trained on mixed sample (S+B) 
using  

B: QCD (light quark & gluon) dijets 
S: 

⇒ Signal & background clustering in latent space 
pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5

mj , (⌧2/⌧1)j , (⌧3/⌧2)j

<latexit sha1_base64="ItaMbvr/pZNrFWEnddw2Onp/dMc=">AAACEnicbZDLSgMxFIYz9VbrbdSlm2ARWpA6UwteVgU3LivYC7TDkEkzbWwmMyQZoQx9Bje+ihsXirh15c63MZ0OqK0HQn6+/xyS83sRo1JZ1peRW1peWV3Lrxc2Nre2d8zdvZYMY4FJE4csFB0PScIoJ01FFSOdSBAUeIy0vdHV1G/fEyFpyG/VOCJOgAac+hQjpZFrlgP37hiWegrFbvUkvezyDzqdoapGrlm0KlZacFHYmSiCrBqu+dnrhzgOCFeYISm7thUpJ0FCUczIpNCLJYkQHqEB6WrJUUCkk6QrTeCRJn3oh0IfrmBKf08kKJByHHi6M0BqKOe9KfzP68bKP3cSyqNYEY5nD/kxgyqE03xgnwqCFRtrgbCg+q8QD5FAWOkUCzoEe37lRdGqVuxa5eKmVqxfZnHkwQE4BCVggzNQB9egAZoAgwfwBF7Aq/FoPBtvxvusNWdkM/vgTxkf344pm4U=</latexit>
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Example VAE model: top jets

1D latent dimension VAE trained on mixed sample (S+B) 
using  

B: QCD (light quark & gluon) dijets 
S: 

⇒ Signal & background clustering in latent space 
⇒ Physics content of classifier in latent space  

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5

mj , (⌧2/⌧1)j , (⌧3/⌧2)j

<latexit sha1_base64="ItaMbvr/pZNrFWEnddw2Onp/dMc=">AAACEnicbZDLSgMxFIYz9VbrbdSlm2ARWpA6UwteVgU3LivYC7TDkEkzbWwmMyQZoQx9Bje+ihsXirh15c63MZ0OqK0HQn6+/xyS83sRo1JZ1peRW1peWV3Lrxc2Nre2d8zdvZYMY4FJE4csFB0PScIoJ01FFSOdSBAUeIy0vdHV1G/fEyFpyG/VOCJOgAac+hQjpZFrlgP37hiWegrFbvUkvezyDzqdoapGrlm0KlZacFHYmSiCrBqu+dnrhzgOCFeYISm7thUpJ0FCUczIpNCLJYkQHqEB6WrJUUCkk6QrTeCRJn3oh0IfrmBKf08kKJByHHi6M0BqKOe9KfzP68bKP3cSyqNYEY5nD/kxgyqE03xgnwqCFRtrgbCg+q8QD5FAWOkUCzoEe37lRdGqVuxa5eKmVqxfZnHkwQE4BCVggzNQB9egAZoAgwfwBF7Aq/FoPBtvxvusNWdkM/vgTxkf344pm4U=</latexit>
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2nd Example

Inferring Jet Substructure with Latent Dirichlet Allocation
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Jet substructure representation (beyond global o’s)

Represent jets as lists of binned measurements of jet 
substructure 

Each clustering node defines own ‘Lund plane’ kinematics 
⇒ observables x ∼ oj,i = bins in space spanned by 

 

CHAPTER 5. JET SUBSTRUCTURE: CONCEPTS AND TOOLS 85

James Dolen Boston Jet Workshop,  Jan 22, 2013

HEP Top Tagger details

12

James Dolen

Mass drop 
decomposition

Step 1:

James Dolen 18

Repeat reclustering and filtering procedure for all combinations of 3 
mass drop subjets

Step 5:

James Dolen

Loop over all 
combinations of 

3 mass drop 
subjets

Step 2:

James Dolen 16

ΔRmin

Recluster with 
Rfilt=min(0.3,ΔRmin/2) 

Step 3:

James Dolen 17

Filtering: keep only 
the 5 leading 

subjets

Step 4:

James Dolen 19

Pick the combination 
with filtered mass 

closest to the top mass. 
Recluster to force 3 

subjets

Step 6:

James Dolen JetMET Algorithms and Reconstruction Meeting - Jan 17, 2013 1

Save output 
subjet

yes

Input 
cluster

Is input 
mass < 30?

no

Save output 
subjet

no
Does input 

have 2 
parent 

clusters?

yes

Split 
input into 
2 parent 
clusters

Subjet 1 Subjet 2

no

m1 < 0.8 minput  ?

yesm1>m2

Remove 
subjet 2

HEP Top Tagger 
Mass drop decomposition

Figure 5.3: Visualisation of the HEP top tagger algorithm.

In the end, the tagger uses a multivariate (Boosted Decision Tree) analysis based on the
series of kinematic variables — subjet transverse momenta and masses — the optimal
jet radius, and the shape values.

5.6.3 The Lund jet plane

In section 4.2, we have introduced the Lund plane as a graphical representation conve-
nient for resummation calculations. It has actually been realised recently that, in the
context of jet substructure, it was possible to promote this idea to a genuine observ-
able [65].

In practice, one reclusters the constituents of the jet with the Cambridge/Aachen
algorithm and apply the following iterative procedure, starting with the full jet:

1. decluster the jet in two subjets pi and pj, with pti > ptj.

2. with the idea that this corresponds to the emission of pj from an emitter pi + pj,
one defines the following variables:

� ⌘ �Rij, kt ⌘ ptj�, m
2

⌘ (pi + pj)
2 (5.33)

z ⌘
ptj

pti + ptj

,  ⌘ z�,  ⌘ tan�1 yj � yi

�j � �i

(5.34)

Dreyer, Salam & Soyez, 1807.04758
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Simplified generative model of jet (observables)

Assumptions:  
• most useful jet information contained in node observables 
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Simplified generative model of jet (observables)

Assumptions:  
• most useful jet information contained in node observables 
• their values are generated by sampling from several underlying 

‘latent’ distributions (e.g. QCD splitting, particle decay,…) - themes 

 

p(
w

|t)
p(

w
|t)

theme 1

theme 2

…
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Simplified generative model of jet (observables)

Assumptions:  
• most useful jet information contained in node observables 
• their values are generated by sampling from several underlying 

‘latent’ distributions (e.g. QCD splitting, particle decay,…) - themes 

 

p(
w

|t)
p(

w
|t)

theme 1

theme 2

…

Defines s.c. mixed membership model 
Example: Latent Dirichlet Allocation

Dir

Blei, Ng, & Jordan (2002)

theme prior
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Construct the generative model for jets with K themes

Latent Dirichlet Allocation for jet observables

!Dir(↵)

prior on theme 
proportions

theme proportions

Step 1: sample proportions for each theme, a K-dimensional multinomial
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Construct the generative model for jets with K themes

Latent Dirichlet Allocation for jet observables

! tDir(↵)

prior on theme 
proportions

theme proportions

Step 2: sample a single theme from the multinomial
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Construct the generative model for jets with K themes

Latent Dirichlet Allocation for jet observables

! t node 
(o)

latent node 
distributions

Dir(↵)

prior on theme 
proportions

�K⇥V

theme proportions

Step 3: sample a node from the appropriate theme distribution
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Construct the generative model for jets with K themes

Latent Dirichlet Allocation for jet observables

! t node 
(o)

latent node 
distributions

N

Dir(↵)

prior on theme 
proportions

�K⇥V

theme proportions

 - repeat this for each of the N nodes in the jet
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Construct the generative model for jets with K themes

Latent Dirichlet Allocation for jet observables

! t node 
(o)

latent node 
distributions

N
M

Dir(↵)

prior on theme 
proportions

�K⇥V

theme proportions

 - repeat this for each of the N nodes in the jet  

 - repeat again for each of the M jets you want to generate
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Construct the generative model for jets with K themes 

Define probability to generate a set of node observables (oi,j) 

Solve for latent theme distributions (β) using Bayes theorem 
& approximate inference 

Originally constructed for study of genotypes & text topics

Latent Dirichlet Allocation for jet observables

�MLE
K⇥V = argmax

�
log

 
MY

i=1

P (jeti|↵,�)
!

p
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Papadimitriou, Raghavan, Tamaki & Vempala (1998)
Hofmann (1999)

Blei, Ng, & Jordan (2002)

p(jet|↵,�) =
Z

w
p(w|↵)

Y

o2jet

 
X

t

p(t|w)p(o|t,�)
!

<latexit sha1_base64="1bnBkSWRy9DXEaAjfjIqSAA5Iug="></latexit>
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2-theme LDA trained on mixed sample (S+B) using jet mass  
B: QCD (light quark & gluon) dijets 
S:

Example LDA model: top jets

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5

mj0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

mj1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

mj2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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2-theme LDA trained on mixed sample (S+B) using jet mass  
B: QCD (light quark & gluon) dijets 
S:

Example LDA models: top jets

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5
Theme 1 Theme 2
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mj0
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2-theme LDA trained on mixed sample (S+B) using jet mass  
B: QCD (light quark & gluon) dijets 
S: 

Accurate characterisation of two admixtures (S,B)!

Example LDA models: top jets

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5
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2-theme LDA trained on mixed sample (S+B) in Lund plane 
B: QCD (light quark & gluon) dijets 
S:

Example LDA models: top jets

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5
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2-theme LDA trained on mixed sample (S+B) in Lund plane 
B: QCD (light quark & gluon) dijets 
S: 

Latent (model) representation directly in terms of physical 
observables!

Example LDA models: top jets

pp ! tt̄ ! W+W�bb̄, S/B = 1, ↵1 = ↵2 = 0.5
Theme 1 Theme 2
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In ML approaches to particle physics event classification 
imperative to understand What has the machine learned?  

Latent representations of generative models promising tool 

Presented two top-jet based examples: 

LDA : continuous mixture of finite No. of latent 
representations directly in target space of observables 

VAE : continuum of representations in latent space, can be 
projected (decoded) back to space of observables

Conclusions



30

In ML approaches to particle physics event classification 
imperative to understand What has the machine learned?  

Latent representations of generative models promising tool 

Presented two top-jet based examples (LDA, VAE) 

⇒ Both methods allow for unsupervised classification of 
jets/events based directly on their latent representations. 

⇒ Can be generalized to other observables (for VAE also 
low level), higher dimensional latent spaces…  

⇒Work even for asymmetric S/B mixtures (anomaly detect.) 
& directly on data (no sidebands, control regions)

Conclusions
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Multivariate equivalent of Beta distribution                       
(e.g. dice factory vs. coin factory) 

αi determines prior - mean shape and sparsity  

Dirichlet is defined over (k-1) simplex (k non-negative 
arguments which sum to one) 

Dirichlet is conjugate prior to multinomial distribution - 
posterior is also Dirichlet 

In jet LDA, themes are V-dimentional Dirichlet; theme 
proportions are K-dimensional Dirichlet 

What exactly is the Dirichlet Distribution

24

Now,	What	Exactly	is	the	Dirichlet	Distribution
(and	why	are	we	using	it?)

• The	Dirichlet is	a	“dice	factory”
• Multivariate	equivalent	of	the	Beta	distribution	 (“coin	factory”)
• Parameters	α	determine	the	form	of	the	prior

• The	Dirichlet is	defined	over	the	(k-1)	 simplex
• The	k	non-negative	arguments	which	sum	to	one

• The	Dirichlet is	the	conjugate	prior	to	the	multinomial	 distribution
• If	the	likelihood	 has	conjugate	prior	P	then	the	posterior	has	the	same	form	as	P

• If	we	have	a	conjugate	prior	we	know	the	(closed)	 form	of	the	posterior
• So	in	this	case	the	posterior	is	also	a	Dirichlet

• The	parameter	α	controls	the	mean	shape	and	sparsity	of	θ

• In	LDA	the	topics	are	a	V-dimensional	 Dirichlet and	the	topic	proportions	 are	a	K-dimensional	 Dirichlet
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Multivariate equivalent of Beta distribution                       
(e.g. dice factory vs. coin factory) 

αi determines prior - mean shape and sparsity  

Dirichlet is defined over (k-1) simplex (k non-negative 
arguments which sum to one) 

Dirichlet is conjugate prior to multinomial distribution - 
posterior is also Dirichlet 

In jet LDA, themes are V-dimentional Dirichlet; theme 
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24

Now,	What	Exactly	is	the	Dirichlet	Distribution
(and	why	are	we	using	it?)
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• The	parameter	α	controls	the	mean	shape	and	sparsity	of	θ
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Simplex?
(space	of	non-negative	vectors	which	sum	to	one)

Simplex

figure by D. Meyer
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Jet features

Barry M. DillonJozef Stefan Institute, Ljubljana

The latent probability distributions are defined over this feature space. 

QCD jets:

Jet features

Barry M. DillonJozef Stefan Institute, Ljubljana

The latent probability distributions are defined over this feature space. 

Averaging over many QCD jets:Average over many jets

Examples:



top jets
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Jet features

Barry M. DillonJozef Stefan Institute, Ljubljana

The latent probability distributions are defined over this feature space. 

Averaging over many QCD jets:

Jet features

Barry M. DillonJozef Stefan Institute, Ljubljana

The latent probability distributions are defined over this feature space. 

Top jets:

Jet features

Barry M. DillonJozef Stefan Institute, Ljubljana

The latent probability distributions are defined over this feature space. 

Averaging over many top jets:

Examples:

Average over many jets
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x list of observables useful for distinguishing S from B 

pS(x) and pB(x) - probability distributions of x for S and B 

classifier h(x) close to 1 for S and close to 0 for B - to be 
learned by minimizing loss function (e.g mean-square) 

Jet classification: basics

12Jesse Thaler — On the Topic of Jets

Classifier

1

Signal

0

Background

A Cartoon of Machine Learning

!MSE =
〈

(h("x)− 1)2
〉

signalal
+

〈

(h("x)− 0)2
〉

background

Minimize Loss Function
(assuming infinite training sets)

Optimal Classifier (Neyman–Pearson)

h(!x) =
psig(!x)

psig(!x) + pbkgd(!x)

Set of observables
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x list of observables useful for distinguishing S from B 

pS(x) and pB(x) - probability distributions of x for S and B 

classifier h(x) close to 1 for S and close to 0 for B - to be 
learned by minimizing loss function (e.g mean-square) 

receiver operating characteristic (ROC) curve 

Neyman-Pearson lemma: 

If x - low dimensional, can use histograms directly, 
otherwise use supervised ML (BDTs, NNs, …) 

Jet classification: basics

residual dependence on simulation; indeed, one could even combine adversarial approaches

with CWoLa in this case to mitigate simulation dependence [31]. Finally, the CWoLa approach

presented here only applies to mixtures of two categories, and further developments would be

needed to disentangle multicategory samples.

The remainder of this paper is organized as follows. In Sec. 2, we explain the theoretical

foundations of the CWoLa paradigm and contrast it with LLP-style weak supervision and full

supervision. We illustrate the power of CWoLa with a toy example of two gaussian random

variables in Sec. 3. We then apply CWoLa to the challenge of quark versus gluon jet tagging

in Sec. 4, using a dense network of five standard quark/gluon discriminants to highlight the

performance of CWoLa on mixed samples. The paper concludes in Sec. 5 with a summary

and future outlook.

2 Machine learning with and without labels

The goal of classification is to distinguish two processes from each other: signal S and back-

ground B. Let ~x be a list of observables that are useful for distinguishing signal from back-

ground, and define pS(~x) and pB(~x) to be the probability distributions of ~x for the signal and

background, respectively. A classifier h : ~x 7! R is designed such that higher values of h are

more signal-like and lower values are more background-like. A classifier operating point is

defined by a threshold cut h > c; the signal e�ciency is then ✏S =
R
d~x pS(~x)⇥(h(~x)� c) and

the background e�ciency (i.e. mistag rate) is ✏B =
R
d~x pB(~x)⇥(h(~x)� c), for the Heaviside

step function ⇥. The performance of a classifier h can be described by its receiver operating

characteristic (ROC) curve which is the function 1�✏
h

B
(✏S). A classifier h is optimal if for any

other classifier h
0, ✏h

0
B
(✏S) � ✏

h

B
(✏S) for all possible ✏S . By the Neyman-Pearson lemma [39],

an optimal classifier is the likelihood ratio: hoptimal(~x) = pS(~x)/pB(~x). Therefore, the goal of

classification is to learn hoptimal or any classifier that is monotonically related to it.

In practice, one learns to approximate hoptimal(~x) from a set of signal and background ~x

examples (training data). When the dimensionality of ~x is small and the number of examples

large, it is often possible to approximate pS(~x) and pB(~x) directly by using histograms.

When the dimensionality is large, an explicit construction is often not possible. In this

case, one constructs a loss function that is minimized using a machine learning algorithm

like a boosted decision tree or (deep) neural network. The following section describes three

paradigms for learning hoptimal(~x) with di↵erent amounts of information available at training

time: full supervision, LLP, and CWoLa. The ideas presented here apply to any procedure

for constructing hoptimal(~x).

2.1 Full supervision

Fully supervised learning is the standard classification paradigm. Each example ~xi comes

with a label ui 2 {S,B}. For models trained to minimize loss functions, typical loss functions
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x list of observables useful for distinguishing S from B 

pS(x) and pB(x) - probability distributions of x for S and B 

classifier h(x) close to 1 for S and close to 0 for B - to be 
learned by minimizing loss function (e.g mean-square) 

receiver operating characteristic (ROC) curve 

Neyman-Pearson lemma: 

If x - low dimensional, can use histograms directly, 
otherwise use ML (BDTs, NNs, …) 

Jet classification: basics
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
median of multiple trainings.

similar information should be included in the ROC curve. For the background rejection we
see a sizeable variation from around 1/600 to better than 1/1000. Again, the cutting edge
ResNeXt50 and ParticleNet approaches lead to the best results, corresponding to an improve-
ment of the signal-to-background ratio by a factor ✏S/✏B > 300, and vastly exceeding the
current top tagging performance in ATLAS and CMS.

On the other hand, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups
remain competitive with the technically much more advanced ResNeXt50 and ParticleNet
networks. This suggests that even for a straightforward task like top tagging in fat jets we
can develop competitive and e�cient physics-specific tools. While their performance does not
quite match the state of the art standard networks, it is close enough to test both approaches
on key requirements in particle physics, like treatment of uncertainties, stability with respect
to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. As a starting point we can test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. The two strongest individual classifier outputs — ResNeXt50 and ParticleNet — are
not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we can
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Jet classification: mixed samples

are the mean squared error:

`MSE =
1

N

NX

i=1

⇣
h(~xi)� I(ui = S)

⌘2
, (2.1)

for the indicator function I, or the cross-entropy:

`CE = � 1

N

NX

i=1

⇣
I(ui = S) log h(~xi) +

�
1� I(ui = S)

�
log

�
1� h(~xi)

�⌘
, (2.2)

where N is the size of the subset (batch) of the available training data. With large enough

training samples, flexible enough model parameterization, and suitable minimization proce-

dure, the learned h should approach the performance of hoptimal.

2.2 Learning from label proportions

For weak supervision, one does not have complete and/or accurate label information. Here,

we consider the case of accurate labels, but in the context of mixed samples. Consider two

processes M1 and M2 that are mixtures of the original signal and background processes:

pM1(~x) = f1 pS(~x) + (1� f1) pB(~x), (2.3)

pM2(~x) = f2 pS(~x) + (1� f2) pB(~x), (2.4)

with the signal fractions satisfying 0  f2 < f1  1.

Instead of having training data labeled as being from pS or pB, we are now only given

examples drawn from pM1 and pM2 with the correspondingM1 andM2 labels. We are however

told f1 and f2 ahead of time. The resulting optimization problems are much less constrained

than those in Sec. 2.1, but learning is still possible. The key is to use several di↵erent mixed

samples with su�ciently di↵erent fractions in order to avoid trivial failure modes, as discussed

in Ref. [34]. One possible loss function is given by:

`LLP =

������

NM1X

i=1

h(~xi)

NM1

� f1

������
+

������

NM2X

j=1

h(~xj)

NM2

� f2

������
, (2.5)

where NM1 and NM2 are the number of M1 and M2 examples in the batch. One could extend

(and improve) this paradigm by adding in more samples with di↵erent fractions, but we

consider only two here for simplicity.

2.3 Classification without labels

CWoLa is an alternative strategy for weak supervision in the context of mixed samples. Rather

than modifying the loss function to accommodate the limited information as in Sec. 2.2, the

CWoLa approach is to simply train the model to discriminate the mixed samples M1 and M2

from one another. The classifier h trained to distinguish M1 from M2 (using full supervision)

is then directly applied to distinguish S from B. An illustration of this technique is shown in

Fig. 1. Remarkably, this procedure results in an optimal classifier (as defined in the beginning

of Sec. 2) for the S versus B classification problem:
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Metodiev, Nachman & Thaler, 1708.02949

24Jesse Thaler — On the Topic of Jets

Key Challenge:  Mixed Samples are Mixtures

Mixed Classifier?

hmixed(!x) =
pA(!x)

pA(!x) + pB(!x)

hpure(!x) =
pq(!x)

pq(!x) + pg(!x)

≠

Classifier

1 0

Mixed A Mixed B

pmixed(!x) = fq pquark(!x) + (1− fq) pgluon(!x)

but…
∂hmixed("x)

∂hpure("x)
> 0

[Metodiev, Nachman, JDT, 1708.02949; see also Cranmer, Pavez, Louppe, 1506.02169;	
Blanchard, Flaska, Handy, Pozzi, Scott, 2016; Dery, Nachman, Rubbo, Schwartzman, 1702.00414; Cohen, Freytsis, Ostdiek, 1706.09451]

Can be used directly on latent distributions! 


