13th International Workshop on Top-Quark Physics (TOP2020)

Uncovering latent (top) jet substructure

Jernej F. Kamenik mostly based on 1904.04200, 2005.12319, 2009.xxxx with D. A. Faroughy & B. M. Dillon, M. Szewc, A. Smolkovic, B. Bortolato, A. Matevc

Institut "Jožef Stefan" Ljubljana, Slovenija

Zoom 17/09/2020 Recent explosion of ML tools in particle physics

 \Rightarrow Common goal to classify among different (un)known physical processes \iff to learn/approximate likelihoods

Crucial to understand physics learned by the machine

⇒ Helps to understand systematics & validate assumptions (i.e. MC, control region dependence)

Top jets well defined (and understood?) test case

Supervised ML a.k.a. Universal Function Approximation

Input: representation of model p(x), finite number of examples $\{x_i\}$ sampled/computed/generated from p

Output: mapping $f(x \rightarrow z)$ minimizing a loss function $\mathcal{L}(f, \{x_i\})$ see e.g. B. Nachman, 1909.03081

Common example: model of two distributions $p_s(x)$, s = 0, 1with loss function $\mathcal{L} = -[s_i \log(z_i) + (1 - s_i) \log(1 - z_i)]$ (cross-entropy)

$$\Rightarrow f \text{ will approximate } f(x) \sim \frac{p_0(x)/p_1(x)}{1+p_0(x)/p_1(x)}$$

(likelihood ratio)

What is the physics contained in f(x)? How is it sensitive to biases & systematics of $\{x_i\}$?

What has the machine learned?

Bayesian generative models

f(x) can be thought of as mapping (compression) from target space $X \ni x$ to latent space $Z \ni z$, i.e. between distributions $p(x) \not \Rightarrow p(z|x)$

- ⇒ 'Inverse' of $f : f^{-1}(z \to x)$ can generate artificial data $\{x'_i\}$ in X by sampling from latent space Z
- $\Rightarrow \text{ Can learn } f, f^{-1} \text{ by maximizing } p(\{x_i\}|f, f^{-1}, p')$ (Bayes theorem)

Model assumptions encoded as priors p'(z) in latent space Z - possibility of unsupervised ML

Can infer on physics in *f* through latent space representation (and use it for classification)

1st Example

Classification in latent space with Variational Autoencoders

VAE architecture

Encoder: mapping $\{x_i\}$ into p(z|x) in latent space

Latent space distribution: Gaussian($\overline{z_i}, \sigma_i$) with normal prior p'

Decoder: generative model (likelihood approximator)

Classifier: posterior distribution p(z|x) in latent space

VAE architecture

Loss function $\mathcal{L} = R \cdot MSE(x_i - x'_i) + D_{KL}(p(z|x)||p'(z)) + r \cdot \log \sigma_i$

 $R \gg 1$ avoids

over-regularization

from KL $(\sim \beta - VAE)$

reconstruction loss of Decoder Higgins et al., ICLR 2017

Kullback-Leibler divergence with respect to prior, ensures clustering in Z

r ~ 1 regulates component collapse in Encoder see e.g. Lucas et al., ICLR 2019 7

VAE generative model of (global) jet observables

see also Cheng et al., 2007.01850

⇒ Define several global jet observables, e.g. jet mass (m_j) , N-subjettiness variables (τ_N) , ...

J. Thaler & K. Van Tilburg, 1011.2268

- ⇒ Train VAE on ensemble of jets → p(z|x) (latent representation of data)
- ⇒ Scan over the latent space
- ⇒ Pass these values through the decoder → p(x|z) (generative model)
- + Cut on latent variable (z) can also be used to define a classifier

1D latent dimension VAE trained on mixed sample (S+B) using $m_j, (\tau_2/\tau_1)_j, (\tau_3/\tau_2)_j$

B: QCD (light quark & gluon) dijets

S: $pp \to t\bar{t} \to W^+W^-b\bar{b}, \quad S/B = 1$

 \Rightarrow Jet observable reconstruction: Encoder Input $\{x_i\}$

1D latent dimension VAE trained on mixed sample (S+B) using $m_j, (\tau_2/\tau_1)_j, (\tau_3/\tau_2)_j$

B: QCD (light quark & gluon) dijets

S: $pp \to t\bar{t} \to W^+W^-b\bar{b}, \quad S/B = 1$

 \Rightarrow Jet observable reconstruction: Decoder Output $\{x'_i\}$

(Model with 2 dense layers of 100 nodes for encoder & decoder, with AdaDelta optimization, SeLu activation, trained for 100 epochs)

1D latent dimension VAE trained on mixed sample (S+B) using $m_j, (\tau_2/\tau_1)_j, (\tau_3/\tau_2)_j$

B: QCD (light quark & gluon) dijets

S: $pp \to t\bar{t} \to W^+W^-b\bar{b}, \quad S/B = 1$

⇒ Signal & background clustering in latent space

1D latent dimension VAE trained on mixed sample (S+B) using $m_j, (\tau_2/\tau_1)_j, (\tau_3/\tau_2)_j$

B: QCD (light quark & gluon) dijets

S: $pp \to t\bar{t} \to W^+W^-b\bar{b}, \quad S/B = 1$

⇒ Signal & background clustering in latent space

⇒ Physics content of classifier in latent space

2nd Example

Inferring Jet Substructure with Latent Dirichlet Allocation

ts of binned measurements of jet

Each clustering node defines own 'Lund plane' kinematics \Rightarrow observables $x \sim o_{j,i} =$ bins in space spanned by

Dreyer, Salam & Soyez, 1807.04758

$$\Delta \equiv \Delta R_{ij}, \qquad k_t \equiv p_{tj\Delta}, \qquad m^2 \equiv (p_i + p_j)^2$$
$$z \equiv \frac{p_{tj}}{p_{ti} + p_{tj}}, \qquad \kappa \equiv z\Delta, \qquad \psi \equiv \tan^{-1} \frac{y_j - y_i}{\phi_j - \phi_i}$$

Simplified generative model of jet (observables)

Assumptions:

• most useful jet information contained in node observables

Simplified generative model of jet (observables)

Assumptions:

- most useful jet information contained in node observables
- their values are generated by sampling from several underlying 'latent' distributions (e.g. QCD splitting, particle decay,...) - themes

Simplified generative model of jet (observables)

Assumptions:

- most useful jet information contained in node observables
- their values are generated by sampling from several underlying 'latent' distributions (e.g. QCD splitting, particle decay,...) - themes

17

Construct the generative model for jets with K themes

Step 1: sample proportions for each theme, a K-dimensional multinomial

Construct the generative model for jets with K themes

Step 2: sample a single theme from the multinomial

Construct the generative model for jets with K themes

Step 3: sample a node from the appropriate theme distribution

Construct the generative model for jets with K themes

- repeat this for each of the N nodes in the jet

Construct the generative model for jets with K themes

- repeat this for each of the N nodes in the jet
- repeat again for each of the *M* jets you want to generate

Construct the generative model for jets with K themes

Define probability to generate a set of node observables $(O_{i,j})$

$$p(\text{jet}|\alpha,\beta) = \int_{w} p(w|\alpha) \prod_{o \in \text{jet}} \left(\sum_{t} p(t|w) p(o|t,\beta) \right)$$

Solve for latent theme distributions (β) using Bayes theorem & approximate inference

$$\beta_{K \times V}^{\text{MLE}} = \underset{\beta}{\operatorname{argmax}} \log \left(\prod_{i=1}^{M} p\left(\text{jet}_{i} | \alpha, \beta \right) \right)$$

Originally constructed for study of genotypes & text topics Papadimitriou, Raghavan, Tamaki & Vempala (1998) Hofmann (1999) Blei, Ng, & Jordan (2002)

In ML approaches to particle physics event classification imperative to understand *What has the machine learned?*

Latent representations of generative models promising tool

Presented two top-jet based examples:

LDA : continuous mixture of finite No. of latent representations directly in target space of observables

VAE : continuum of representations in latent space, can be projected (decoded) back to space of observables

In ML approaches to particle physics event classification imperative to understand *What has the machine learned?*

Latent representations of generative models promising tool

Presented two top-jet based examples (LDA, VAE)

- ⇒ Both methods allow for unsupervised classification of jets/events based directly on their latent representations.
- ⇒ Can be generalized to other observables (for VAE also low level), higher dimensional latent spaces...
- ⇒ Work even for asymmetric S/B mixtures (anomaly detect.) & directly on data (no sidebands, control regions)

Supplements

What exactly is the Dirichlet Distribution

Multivariate equivalent of Beta distribution (e.g. dice factory vs. coin factory)

$$p(\theta|\alpha) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1}$$

a_i determines prior - mean shape and sparsity

Dirichlet is defined over (k-1) simplex (k non-negative arguments which sum to one)

Dirichlet is conjugate prior to multinomial distribution - posterior is also Dirichlet

In jet LDA, themes are V-dimentional Dirichlet; theme proportions are K-dimensional Dirichlet

What exactly is the Dirichlet Distribution

Multivariate equivalent of Beta distribution (e.g. dice factory vs. coin factory)

In jet LDA, themes are V-dimentional Dirichlet; theme proportions are K-dimensional Dirichlet

QCD jets

Examples:

top jets

Examples:

 $\boldsymbol{\mathsf{x}}$ list of observables useful for distinguishing $\boldsymbol{\mathsf{S}}$ from $\boldsymbol{\mathsf{B}}$

ps(x) and p_B(x) - probability distributions of x for S and B classifier h(x) close to $f(x) = \frac{1}{2} \int_{and}^{b} (h(x) = 1)^2 (h(x) = 1)^2 \int_{and}^{b} (h(x) = 1)^2 (h(x)$

 $\boldsymbol{\mathsf{x}}$ list of observables useful for distinguishing $\boldsymbol{\mathsf{S}}$ from $\boldsymbol{\mathsf{B}}$

 $p_{S}(x)$ and $p_{B}(x)$ - probability distributions of x for S and B

classifier h(x) close to 1 for S and close to 0 for $B_{\ell_{MSE}} = \langle (h(\vec{x}) - 1)^2 \rangle_{signal} + \langle (h(\vec{x}) - 1)^2 \rangle_{si$

receiver operating characteristic (ROC) curve

 $\epsilon_S = \int d\vec{x} \, p_S(\vec{x}) \,\Theta(h(\vec{x}) - c)$ $\epsilon_B = \int d\vec{x} \, p_B(\vec{x}) \,\Theta(h(\vec{x}) - c)$

Neyman-Pearson lemma: $h_{\text{optimal}}(\vec{x}) = p_S(\vec{x})/p_B(\vec{x})$ (likelihood ratio)

If x - low dimensional, can use histograms directly, otherwise use supervised ML (BDTs, NNs, ...)

Jet classification: basics

Classifier Jet classification: mixed samples

Classification from mixed samples: pure samples not $p_{\text{mixed}}(\vec{x}) = f_q p_{\text{quark}}(\vec{x}) + (1 - q_{\text{mixed}}) = f_q p_{\text{mixed}}(\vec{x}) + (1 - q_{\text{mixe$ Mixed B Mixed A available in real data 0000 $\bigcirc \bigcirc$ \mathbf{OOOO}

$$p_{M_1}(\vec{x}) = f_1 p_S(\vec{x}) + (1 - f_1) p_B(\vec{x}),$$

$$p_{M_2}(\vec{x}) = f_2 p_S(\vec{x}) + (1 - f_2) p_B(\vec{x}),$$

 $h_{\text{optimal}}^{M_1/M_2}(\vec{x}) = p_{M_1}(\vec{x})/p_{M_2}(\vec{x})$

Mixe $h_{\text{mixed}}(\vec{x})$ = 00000000 0000 ≠ 00000000 $h_{\rm pure}(\vec{x})$ = 0 Classifier but... 1.) Assume f_1 , f_2 known (e.g. from MC), then simply

Blanchard, Flaska, Handy, Pozzi, Scott, 2016; Dery, Nachman, Rub

2.) Assume only $f_1 > f_2$ then use monotonicity of

 $\frac{p_{M_1}}{p_{M_2}} = \frac{f_1 \, p_S + (1 - f_1) \, p_B}{f_2 \, p_S + (1 - f_2) \, p_B}$

(Classification Without Labels)

Metodiev, Nachman & Thaler, 1708.02949

Can be used directly on latent distributions!