

Measurements of asymmetries in top-quark production and tests of lepton universality in ATLAS

Nello Bruscino - Sapienza Università di Roma & INFN Roma I on behalf of the ATLAS Collaboration

TOP2020 - 13th International Workshop on Top-Quark Physics 14-18.09.2020

Why top quarks?

*heaviest known particle, only "bare" quark

* high statistics allows **precision measurements** and search for **new physics**

Copious production at the LHC (top-factory): *~150/fb@13TeV collected in Run 2 by ATLAS...

$$N = \mathscr{L} \cdot \sigma_{t\bar{t}},$$

$$\sigma_{t\bar{t}} \sim 830 \,\mathrm{pb}, \implies$$

$$\mathscr{L} \sim 15 \cdot 10^{33} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$$

~750 tt pairs produced/minute (125M @150/fb)

Top properties

- Top quark polarization
- FCNCs
- Many more

- $t \rightarrow \gamma u, t \rightarrow \gamma c$
- Jet shapes and colour flow
- Anomalous couplings

FundaTalk: BSM top quark interactions ctly) prop Mohammad Kareem, Wed 16/09 h17:30

Measurement of leptons to W boson through:

 $BR(W \rightarrow \mu\nu)$

[N. Bruscino | Asymmetries in top-quark production and tests of LFU in ATLAS | TOP2020 | 17-Sep-2020]

Top properties

 Production properties Cross-section and 	Decay properties - W-helicity CLEV: t = II'a	Properties of W- boson from tt events
 Charge asymmetry Top quark polarization FCNCs Many more 	 CLFV.t ⇒ If q FCNC: eg.t → hu, t → hc, t → Zu, t → Zc, t → γu, t → γc Jet shapes and colour flow Anomalous couplings Many more 	- Measurement of universality of leptons to W boson through:
Fundamental Rustem properties of the top quark Erich V	Talk: <u>tt+y/Z/W</u> Ospanov, Tue 15/09 h15:30 indirectly) - Width - Charge Talk: <u>4 tops</u> arnes, Fri 18/09 h14:30	$R(\tau/\mu) = \frac{BR(W \to \tau\nu)}{BR(W \to \mu\nu)}$
Erich V N. Bruscino Asymmetries in top-quar	arnes, Fri 18/09 h14:30 < production and tests of LFU in ATLAS TOP2020 17-Sep-	2020] 6

[N. Bruscino | Asymmetries in top-quark production and tests of LFU in ATLAS | TOP2020 | 17-Sep-2020]

At leading order tt production is charge symmetric

* higher orders interference in qg and $q\overline{q}$, and EW contributions lead to asymmetries * also BSM physics can lead to enhancements!

The gg initiated process remains charge symmetric to all orders

* this dilutes the asymmetry significantly

* challenging to measure at the LHC ($q\overline{q} \sim 10\%$ of production fraction @13 TeV)

$$A_C^{t\bar{t}} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)} \qquad \Delta |y| = |y(t)| - |y(\bar{t})|$$

Charge asymmetry

ATLAS-CONF-2019-026

Extracted from 139/fb@13TeV data using single

lepton (e/ μ) selections

* resolved+boosted ($p_T(t) \ge 400 \text{ GeV}$)

Resolved: BDT to assign the different jets to

the top systems

 * using KLFitter, masses of hadronic top and W, various angular variables

 * best combination considered and only events with good reconstruction retained

Boosted: hadronic top reconstructed as a

single large-R jet

- * mass and T_{32} used to "tag" hadronic tops
- * leptonic side reconstructed from the E_T^{miss}, lepton and a R=0.4 jet

Charge asymmetry

ATLAS-CONF-2019-026

 $|\Delta y|$ unfolded using a likelihood-based technique called "fully bayesian unfolding"

- * inclusive and differential in bins of the $m_{t\overline{t}}$ and $\beta_{z,t\overline{t}}$ (absolute longitudinal boost of $t\overline{t}$ system in the z-direction)
- Inclusive charge asymmetry $A_C = (0.6 \pm 0.15)\%$
 - * in agreement with NNLO QCD + NLO EW predictions

$*4\sigma$ from 0-asymmetry hypothesis

* EFT limits based on the inclusive and $m_{t\bar{t}}$ results

First evidence for charge asymmetry in pp collisions!

Lepton flavour universality

arXiv:2007.14040 - Submitted to Nature Physics

Fundamental assumption of Standard Model (SM)

 universal coupling of the different generations of leptons to the gauge bosons

* \rightarrow all charged leptons (e, μ , τ) have same coupling strength to W boson

W boson decays precisely measured at LEP

* however, observed 2.7 σ deviation from SM prediction for BR(W $\rightarrow \tau \nu$)

Measuring $R(\tau/\mu) = BR(W \rightarrow \tau\nu)/BR(W \rightarrow \mu\nu)$ with a precision of 1-2% would either prove LEP discrepancy or rule it out

LFU - Analysis strategy

arXiv:2007.14040 - Submitted to Nature Physics

In dilepton $t\bar{t}$ events, a large, unbiased sample of W-bosons can be obtained

- * one decaying top used to trigger the event (tag lepton)
 * the other top used to provide an (unbiased) set of W bosons for the measurement (probe lepton)
 * as low in p_T(probe μ) as reconstruction allows
- * only look at leptonic tau decays to profit from smaller reconstruction uncertainties

LFU - Analysis strategy

arXiv:2007.14040 - Submitted to Nature Physics

In dilepton $t\bar{t}$ events, a large, unbiased sample of W-bosons can be obtained

* one decaying top used to trigger the event (tag lepton)
* the other top used to provide an (unbiased) set of W bosons for the measurement (probe lepton)
* as low in p_T(probe μ) as reconstruction allows
* only look at leptonic tau decays to profit from smaller reconstruction uncertainties

Main goal: distinguish **prompt muons** vs. **taus decaying into muons** and **muons from hadron decays**

* p_T (probe μ) and unsigned transverse impact parameter with respect to beamline ($|d_0\mu|$) as discriminating variables

LFU - Analysis strategy

arXiv:2007.14040 - Submitted to Nature Physics

- Applying standard $t\bar{t}$ (di-lepton, $e\mu/\mu\mu$) selection:
 - *2 b-tagged jets, 2 oppositely charged leptons
 - *Z boson veto for di-muon channel
 - * tag lepton must pass trigger requirement
 - * **probe muon** must have $p_T > 5 \text{GeV}$
- ◊ allows to probe a large p⊤ range Remaining backgrounds for the measurement:
 - * hadrons decaying into muons
 - *Z+2b-tagged jets in di-muon channel

eµ channel

[N. Bruscino | Asymmetries in top-quark production and tests of LFU in ATLAS | TOP2020 | 17-Sep-2020

 $\mu\mu$ channel

250

do^µ parameter

arXiv:2007.14040 - Submitted to Nature Physics

Distance of closest approach of muon tracks in transverse plane with respect to beamline (process independent)

Determine shape of $|d_0^{\mu}|$ in 33 kinematic bins (p_T^{μ} , $|\eta^{\mu}|$) from data using $Z \rightarrow \mu\mu$ selection * subtract remaining backgrounds estimated in MC * shapes as prompt muon templates in signal region * residual resolution correction from data

Systematic uncertainty due to application of $|d_0^{\mu}|$ shape from Z boson decays to $t\overline{t}$ signal region: * estimated by ratio of $|d_0^{\mu}|$ between $t\overline{t}$ and $Z \rightarrow \mu\mu$ * done separately for core and tail of $|d_0^{\mu}|$ distribution

After d₀^µ correction

Muons from b/c-hadrons

arXiv:2007.14040 - Submitted to Nature Physics

Largest background at large $|d_0\mu|$ from b/c-hadrons decaying into muons

Estimated in same sign (SS) control region:

- * shape of $|d_0\mu|$ in SS region taken from MC
- *prompt contribution (tt+V) from pT>30 GeV region
 subtracted
- * data/MC ratio in SS region to signal region

Reasonably good Data/MC agreement * distributions are well modelled in signal region

Modelling differences between SS and OS from MC Other uncertainties arising from limited statistics of SS region, MC modelling and p_T threshold for prompt contribution

Z background in µµ region

arXiv:2007.14040 - Submitted to Nature Physics

Although Z-veto is applied in $\mu\mu$ channel, residual contribution from Z+2b-tagged jets left * estimated from data by removing Z veto * $m_{\mu\mu}$ distribution fit between 50 GeV and 140 GeV \circ convolution of Breit-Wigner and Gaussian for Z $\rightarrow \mu\mu$ \circ 3rd order Chebychev polynomial for background * Normalisation factor: 1.36 ± 0.01

Use other fit functions to estimate systematic uncertainty

Statistical interpretation

arXiv:2007.14040 - Submitted to Nature Physics

For both channels (e $\mu/\mu\mu$), perform 2D profile likelihood fit in muon

* $|d_0\mu|$: [0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.09, 0.15, 0.5] mm

*рт:[5,10,20,250] GeV

Freely floating parameters:

$$* R(\tau/\mu) = BR(W \rightarrow \tau\nu)/BR(W \rightarrow \mu\nu)$$

* scaling factor for top processes applied to both prompt muons and leptonic tau decays

Many uncertainties correlated between prompt muons and leptonic au decays

 $* \rightarrow$ mostly cancel out for probe muons

Good Data/MC agreement observed in each signal region bin

Systematic uncertainties

arXiv:2007.14040 - Submitted to Nature Physics

Uncertainty of measurement dominated

by systematic uncertainty

- * leading one is the extrapolation uncertainty on prompt $|d_0^{\mu}|$ templates
- * theoretical modelling uncertainties (such as parton shower or scale variations)
- * hadron to muon decay background normalisation in SS region, i.e. due to MC generator used in estimate
- * muon isolation requirements efficiency and low-p_T muon reconstruction efficiency

Source	Impact on $R(\tau/\mu)$
Prompt d_0^{μ} templates	0.0038
$\mu_{(prompt)}$ and $\mu_{(\tau \to \mu)}$ parton shower variations	0.0036
Muon isolation efficiency	0.0033
Muon identification and reconstruction	0.0030
$\mu_{(had.)}$ normalisation	0.0028
$t\bar{t}$ scale and matching variations	0.0027
Top $p_{\rm T}$ spectum variation	0.0026
$\mu_{(had.)}$ parton shower variations	0.0021
Monte Carlo statistics	0.0018
Pile-up	0.0017
$\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0^{\mu}$ shape	0.0017
Other detector systematic uncertainties	0.0016
Z+jet normalisation	0.0009
Other sources	0.0004
$B(\tau \to \mu \nu_{\tau} \nu_{\mu})$	0.0023
Total systematic uncertainty	0.0109
Data statistics	0.0072
Total	0.013

$R(\tau/\mu) = 0.992 \pm 0.013 [\pm 0.007(stat) \pm 0.011(syst)]$

The top quark has come a long way since 1995 (discovery)

- * back then: missing quark, similar to other quarks
- * today: know that top quark is special

In precision era, top quark is key to an abundance of different research areas

- * many different properties of top quarks (and W boson) measured by ATLAS
- * so far, Standard Model describes data extremely well
- * more results with the Run 2 dataset in the pipeline
- * Run 3 (and beyond) promise even larger datasets

Many more exciting top physics results still to come!

[N. Bruscino | Asymmetries in top-quark production and tests of LFU in ATLAS | TOP2020 | 17-Sep-2020]

Charge asymmetry

ATLAS-CONF-2019-026

Measurements reinterpreted in EFT

* C- = 4-fermion operator assuming flavour conservation and equal *u-d* type couplings (maps onto axi-gluon)
* theory paper: JHEP03(2011)125
Inclusive and differential results surpass
ATLAS+CMS Run I combination
* no large dependence on quadratic terms
* dimension 6 approach is stable and appropriate

arXiv:2007.14040 - Submitted to Nature Physics

Corrections to account for differences in the resolution of the detector between the data and simulation

- * applied to processes with significant decay-vertex displacement, i.e. muons from au decays and hadron decays
- * for the considered d_0^μ range, the resolution measured from prompt muons is applicable to those with significant displacement

* p_T^{μ} = 20 GeV \rightarrow resolution ~14 μ m * $|d_{o^{\mu}}|$ core < 0.02 mm

ATLAS EXPERIMENT

After d_0^{μ} correction

LFU - Miscellaneous

П

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

μ-μ

[N. Bruscino | Asymmetries in top-quark production and tests of LFU in ATLAS | TOP2020 | 17-Sep-2020]

 $R(\tau/\mu) = B(W \rightarrow \tau \nu)/B(W \rightarrow \mu \nu)$