Experimental summary

Reinhard Schwienhorst, Michigan State
Top is a Millennial

- Discovered 1995 - 25 year anniversary!
- Experienced Internet boom, 9/11 and the Great Recession

Fermilab CDF and D0 top-quark discovery

- Only a handful of events
- Already clear top mass peak at 175 GeV
- Based on 0.05 fb\(^{-1}\)
LHC collisions recorded

- Run 1
 $\sqrt{s} = 7-8$ TeV
 20 fb$^{-1}$ per experiment

- Long Shutdown 1

- Run 2
 $\sqrt{s} = 13$ TeV
 Almost 150 fb$^{-1}$ per experiment

- About a million times more top-quarks than in top discovery
Introduction

• Too many results to show them all, apologies if I skipped your favorite result
• Many new results over the past year, most channels now have measurements from both ATLAS and CMS
 - First LHC\textsubscript{top}WG plot at 13 TeV now public
• Measurements from previous n years are still valuable
 - Persistence - many measurements will not be updated for a long time
 - Full Run-2 data results will be continue to be published for the next 3-5 years
• Virtual top-quark conference format works
 - No common meals, no excursion, no late-nite student sessions
 - But no travel, more access, more opportunities for creativity
 - Plenty of questions and discussion after talks and for posters
 - I counted 150/120/80/70/90 people connected each day
 - Thanks a lot to the organizers!
Theme: Precision measurements and their challenges

- Top pair modeling and uncertainties (Simone Amoroso)
 - PW+PY, Matching, Parton Shower, what next?
 - b-fragmentation, strange and charm in top events (Juan Gonzalez)
- Bottlenecks (Valentina Vecchio)
 - Profiling of uncertainties, unfolding
- Inclusive cross-sections (Olga Bessidskaia Bylund)
 - Top pair and single top
 - Elastic top production virtual poster by Jay Howarth
- Differential distributions (Otto Hindrichs)
 - State-of-the-art unfolding
 - CMS t-channel poster by Matthias Komm
 - CMS tW poster by Victor Bouza
 - YSF talk on ATLAS differential all-hadronic by Riccardo Poggi
- Interpretations (Matteo Defranchis)
 - Top mass, PDFs
 - YSF talk on CMS Yukawa coupling from ttbar XS by Evan Ranken
MC generators and their uncertainties

- ATLAS and CMS both use Powheg+Pythia as the main top-pair generator
 - Different tunes/shower settings
 - Outstanding agreement with data, well beyond expectations for an NLOPS generator (thanks to years of tuning)
 - But also plenty of regions with large mismodellings
- Differences also in systematic uncertainty treatment
 - NLO subtraction, PS, top pT, color reconnection
- Ambiguities in MC predictions likely to dominate top measurements also in the future

Development of better models is essential

Need high accuracy predictions, and well-defined uncertainties (as small as possible too)
B-fragmentation

- New ATLAS analysis
- Isolate charged particles from b-decay from those from PV
 - Unfold to particle level and compare generators and tunes

\[z_{T,b}^{ch} = \frac{p_{T,b}^{ch}}{p_{T,jet}^{ch}} \]

\[\rho = \frac{2p_{T,b}^{ch}}{p_T^e + p_T^\mu} \]
Profiling

- Many analyses now rely on profiling of nuisance parameters in signal and control regions to correct for mis-modeling and reduce uncertainties
 - Important to prevent unphysical constraints and pulls of NPs
 - Challenging to use these results in global fits and combinations
 - “Uncertainties are a matter of trust”
- Still need a more unified approach in presenting profiled results

Inclusive tt cross-section

- Dilepton channel most precise
 - ATLAS uncertainty 2.4%
 - 2l requirement, then fit ratio of 1-tag and 2-tag
 - CMS uncertainty 4% - profile likelihood fit to many distributions
- ATLAS lepton+jets uncertainty 4.6% - profile likelihood fit

ATLAS l+jets

CMS ll
Inclusive single top cross-section

- CMS t-channel at 13 TeV
 - Profile only experimental and background uncertainties
 - Uncertainty 15%
 - Basis for differential measurements and interpretations

- ATLAS tW l\bar{j} at 8 TeV
 - Not as sensitive as dilepton, but reconstruction of both W bosons
 - Uncertainty 27%
Unfolded differential cross sections

- Differential distributions are the pillars of top-quark physics
- Introduction in Otto’s talk, and important issues in Valentina’s
- Important unfolding checks:
 - Bottomline test - chi2 at detector level should be similar to unfolded level (CMS)
 - Stress test - unfolding reweighted MC should reproduce reweighting function (ATLAS)
- Thousands of bins in 1d, 2d, 3d
 - Including correlations and uncertainties
 - Assumptions and special treatments need to be clear
 - Profile likelihood or fully Bayesian unfolding
Unfolding with profiling of uncertainties

• Provide auxiliary distributions to constrain uncertainties
• ATLAS: eg ttbb, include distribution of b-tag discriminant in likelihood
• CMS: $M(t\bar{t}b\bar{t})$ distribution (CMS)
 - Include N_b, m_{lb}, jet p_T in likelihood
Unfolded differential cross sections

• New unfolded results: CMS boosted all-hadronic
ATLAS all-hadronic resolved final state

- Slope in top-quark p_T persists
- More visible for second-leading top quark
Differential cross sections - interpretation

- 3d cross-sections provide detailed physics information
 - PDF fits, generator tuning
- Ratios cancel many uncertainties
Top mass

- Top mass from inclusive XS
 - Compare to NNLO prediction
 - Limited by theory uncertainties
- Running of the top mass from differential XS
 - $M(t\bar{t})$
 - Sensitive to threshold effects

ATLAS
- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- $m_t^{\text{pole}} = 173.1^{+2.0}_{-2.1}$ GeV

CMS
- ABMP16_5_nlo PDF set
- $\mu_{\text{ref}} = 476$ GeV
- $\mu_0 = \mu_{\text{ref}}$
- NLO extraction from differential $\sigma_{t\bar{t}}$
- One-loop RGE, $n_f = 5$, $\alpha_s(m_Z) = 0.1191$
Yukawa coupling from tt dilepton

- Develop multiplicative EW correction for signal sample
- Profile likelihood fit to 2d m_{bbll} and y_{bbll}

CMS

$137 \text{ fb}^{-1} (13 \text{ TeV})$

- $Y_t < 1.54$ at 95% CL
- Slightly better than 4-top

$Y_t = 1.16^{+0.07}_{-0.08} (\text{stat})^{+0.17}_{-0.27} (\text{syst})$
Theme: Top+X

- Top-pair plus boson production (Rustem Ospanov)
 - Inclusive and differential $tt + \gamma, W, Z$
 - YSF talk on ATLAS ttZ by Florian Fisher
- TtH and tH and 4-top (Korbinian Schweiger)
 - And ATLAS 4-top joker talk by Erich Varnes
- Tt+HF (Sebastien Wertz)
 - And CMS $ttcc$ joker talk by Seth Moortgat
tt+V

- New measurements of $tt+W, Z, \gamma$
 - Lepton isolation is key to ttW and ttZ
ttV differential

- **ATLAS ttγ** inclusive and differential in $e\mu$ final state with full Run 2 data
 - Not (yet) in new summary plot

- **CMS ttZ differential**
ATLAS ttZ

- Inclusive and differential ttZ measurement with 139 fb$^{-1}$
ttH and tH

- 6 measurements with full Run 2 dataset
- ATLAS combination in κ-framework
 - Exclude negative κ_t at 2.9σ
- CMS multilepton analysis
 - 35x3 distributions
4-top

- No narrow resonances, many final-state jets, small XS
- Multilepton final states most sensitive
 - Build on ttH multilepton experience
 - ATLAS analysis based on full Run 2 data, obs (exp) sig 4.3 (2.4)σ
 - CMS analysis based on full Run 2 dataset and search for new scalar or vector particle
tt+bb

- Top+HF is an important background
 - For ttH(bb), 4-top
 - Test of ISR flavor composition at high scale
- B-tagging is key
- lepton+jets, dilepton and now also all-hadronic final state
Theme: EFT, asymmetries, CEDM, ee

- Flavor-Changing Neutral Currents and EFT (Mohammad Kareem)
- CMS EFT interpretations (Nicolas Tonon)
- Charge asymmetry, lepton universality (Nello Bruscino)
 - ATLAS first evidence for charge asymmetry
 - ATLAS lepton universality measurement in W boson decays
- Other interpretations
 - YSF talk on CMS CEDM limit by Seungkyu Ha
 - YSF talk on top mass in ee→tt+γ by Angelika Widl
EFT

- ATLAS and CMS have started to publish papers top EFT operators in Warsaw basis - document produced for LHCTopWG

Interpreting top-quark LHC measurements in the standard-model effective field theory

- Using data for EFT interpretations
 - Inclusive cross-section and other parameter measurements
 - Unfolded differential measurements
 - Impact of EFT on acceptance, background?

- Combinations are a challenge
 - Correlations of uncertainties between measurements, experiments
 - Modeling of modified signals, backgrounds
 - Which information to make available publicly?

- LHCTopWG open meeting in middle of October
EFT

- W helicity combination of ATLAS and CMS measurements
 - And interpretation in terms of EFT coefficients
- Spin correlation LHCTopWG summary plot
CMS EFT

- Use multiple approaches
 - EFT from cross-section
 - EFT from unfolded distributions
 - EFT from likelihood fits to detector-level data
 - Hybrid approach
 - Summary plots to summarize current status

![Graph showing 95% CL limits of top quark - scalar boson operators](attachment:image.png)

CMS Preliminary

EFT from top quark production \(\sqrt{s} = 13 \text{ TeV} \)

Top quark - scalar boson operators

- Marginalized
- Individual

MFV basis adopted from arXiv:1802.07237

- Dimension 6 operators (\(\Lambda = 1 \text{ TeV} \))

<table>
<thead>
<tr>
<th>Operator</th>
<th>Marginalized</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{C}_i \equiv C_i / \Lambda^2)</td>
<td>(\tilde{C}_3)</td>
<td>(\tilde{C}_3)</td>
</tr>
<tr>
<td>(C_{\phi \bar{Q}})</td>
<td>(10 \times)</td>
<td>(10 \times)</td>
</tr>
<tr>
<td>(C_{\phi Q})</td>
<td>(10 \times)</td>
<td>(10 \times)</td>
</tr>
<tr>
<td>(C_{\phi \bar{t}b})</td>
<td>(10 \times)</td>
<td>(10 \times)</td>
</tr>
<tr>
<td>(C_{\phi t})</td>
<td>(10 \times)</td>
<td>(10 \times)</td>
</tr>
<tr>
<td>(C_{t \phi})</td>
<td>(10 \times)</td>
<td>(10 \times)</td>
</tr>
</tbody>
</table>

September 2020

 - TOP-19-001
 - 35.9 fb\(^{-1}\)
 - 41.5 fb\(^{-1}\)
 - TOP-19-001
 - 41.5 fb\(^{-1}\)
 - JHEP 03 (2020) 056
 - 77.5 fb\(^{-1}\)
 - TOP-19-001
 - 41.5 fb\(^{-1}\)
 - TOP-19-001
 - 41.5 fb\(^{-1}\)
 - JHEP 03 (2020) 056
 - 77.5 fb\(^{-1}\)
 - TOP-19-001
 - 41.5 fb\(^{-1}\)
Flavor-Changing Neutral Currents

ATLAS+CMS Preliminary
LHCTopWG

September 2020

Each limit assumes that all other processes are zero

95% CL upper limits

ATLAS CMS
[9] CMS-PAS-TOP-17-017
[10] JHEP 07 (2017) 003

Theory predictions from arXiv:1311.2028

Branching ratio

NEW

NEW
ATLAS charged lepton flavor universality

- Top quarks provide a pure sample of W bosons
- Resolve puzzle from LEP
- Separate $W \to \tau$ and $W W \to e,\mu$ decays

![Graph showing charged lepton flavor universality data from ATLAS](image-url)
CMS top Charged Electric Dipole Moment

Search for CP violating anomalous top quark coupling in proton-proton collisions at $\sqrt{s} = 13$ TeV

Seungkyu Ha1,2
on behalf of the CMS Collaboration
Sep. 16, 2020

Korea University1, Yonsei University2

CEDM leads to CP violation

Energy-based asymmetry discriminant
Set 95% CL limit
Top mass from radiative events at lepton collider

- Precision top mass measurement at ee collider without top mass scan
 - Can measure mass with 150 MeV accuracy at 500 GeV
- Can measure running top mass

\[
e^{+}e^{-} \rightarrow t\bar{t}\gamma, \sqrt{s}=380 \text{ GeV}
\]

\[
\frac{d\sigma}{d\sqrt{s'}} \text{ [fb/1 GeV]}
\]

[Boronat, Fullana, Fuster, Gomis, Hoang, Mateu, Vos, AW 2019]
Theme: Machine learning is everywhere

- Overview of ML use by ATLAS and CMS (Ben Nachman)
 - Active area of developments
 - Wide range of application
- Jet substructure with latent algorithms (Jernej Kamenik)
 - Reveal physics of the algorithm
- Top mass and BSM and resolving it with ML (Bryan Ostdiek)
 - SUSY stop contamination in top mass measurements
Modern machine learning

- Classifiers perform well when they are fully optimized on all of the available information
 - Image pixels (clusters, tracks, not high-level variables)
 - Sub-structure, flavor information
It’s not all in the ROC curves

- Experimental challenges include hard-to-model backgrounds (e.g., multijet) and large systematic uncertainties
- Adapt learning approach to underlying physics problem

Fun fact: this plot required training 10k NNs

Deep learning + weak supervision + anomaly detection leading to real physics output!

\[\sqrt{s} = 13 \text{ TeV}, \ 139 \text{ fb}^{-1} \]
\[\varepsilon = 0.1, m_A = 3000 \text{ GeV} \]

- Observed
- Expected
- \(\pm 1 \sigma \)
- \(\pm 2 \sigma \)

Inclusive search

Dedicated (80,80) search

\((m_B, m_C) \) [GeV]

B = top, C = BSM? See J. Kim et al., JHEP 04 (2020) 30
Latent algorithms

- “Where is the physics?” - ask the boosted-top ML algorithm directly
- 2 examples:
 - Variational Autoencoder
 - Latent Dirichlet Allocation - selects 2 themes
 - Both trained on a mixed sample: B: QCD (light quark & gluon) dijets
 \[S: pp \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b}, \quad S/B = 1 \]
Top mass, BSM, DCTR

- SUSY top noise under top mass peak
- Could affect top mass measurements in template fits
- DCTR: Deep neural networks using Classification for Tuning and Reweighting
- DNN: Series of deep neural networks
- DNN reduces mass uncertainties more than W-based JES calibration
Theme: Jokers

- CMS ttcc (*Seth Moortgat*)
- CMS EFT fit to tt+X (*Brent Yates*)
- ATLAS 4-top (*Erich Varnes*)
• Top + HF is an important background
 - For ttH, 4-top, searches
 - ttbb has been studied already by ATLAS and CMS, not yet ttcc
• ML for particle ID, b-tagging, charm tagging, event reconstruction, final template fit
EFT interpretation of tt+X with CMS

- $\text{ttll, ttlv, tllq, ttH, tHq}$
- 16 EFT operators, consider one-at-a-time
- Quadratic model for yields in each bin based on MC

(graphic and data points)
Challenges:
- modelling of backgrounds, tt+ W+jets
- up to 9 jets

4.3 s.d. from 0 (2.4 s.d. expected) Evidence for $t\bar{t}t\bar{t}$ production
Theme: posters

• Poster session had 9 posters (same # as last year)
 - All high-quality
 - If you haven’t made a video yet, make one, then upload to youtube!

• Appetizers and drinks at home
Posters

- Elastic top production virtual poster (Jay Howarth)
 https://www.youtube.com/watch?v=9VB4nFd7LRo

- Single top at CMS
 - T-channel (incl, diff, R) by Matthias Komm
 - tW by Victor Bouza
Posters

- Re-analysis of D0 JES and its impact on D0 top mass (Hannu Siikonen)
 - Tevatron top mass measurements are still important
 - Statement from D0 at
 https://www-d0.fnal.gov/Run2Physics/WWW/results/final/TOP/T14E/D0_statement_top_mass.pdf
 - “We do not confirm the conclusions”
 - Some differences in event selection, details of correction factors
 - Some cuts were hard-coded and not documented in each analysis internal note
 - JES plot that was used had work-in-progress central values
Posters

- ttW studies at ATLAS by Marcos Miralles Lopez
- Search for hidden stop with CMS by Andrea Fernandez
Top to the Extreme

- Top as a background in high-mass searches, Leonid Serkin
 - Top pT reweighting
 - Treat tt background uncorrelated bin-by-bin

- Searches with highly boosted tops, Titas Roy
 - B* search to tW all-hadronic
Conclusions

• Virtual top-quark workshop was a big success, over 150 people connected, lively discussions
 - Thanks for turning on video when talking and asking questions
 - Which of this year’s features should we keep in future years?
• New ATLAS and CMS results, most with full Run 2 dataset
 - Still expect many more results with full Run 2 dataset
• Interpretations of measurements are just starting
 - By ATLAS and CMS, in global fits
 - EFT, BSM, SM parameters, PDFs, generator tuning, others
• Run 3 and HL-LHC are coming
 - Planning for future colliders (ee and hh)
 - Snowmass 21 EF03 https://snowmass21.org/energy/heavy_flavour
Conclusions

- Virtual top-quark workshop was a big success, over 150 people connected, lively discussions.
 - Thanks for turning on video when talking.
 - Which of this year’s features should we keep in future years?
- New ATLAS and CMS results, mostly with full Run 2 dataset.
 - Still expect many more results with Run 2.
- Interpretations of measurements are just starting.
 - By ATLAS and CMS, in global fits.
 - EFT, BSM, SM parameters, PDFs, generator tuning, others.
- Run 3 and HL-LHC are coming.
 - Future colliders (ee and hh).
 - Snowmass 21.

This is the golden age of top quark physics.
Additional material
Flavor-changing neutral currents
Modern machine learning

Classifiers perform well when they are fully optimized on all of the available information
- All calorimeter cells (pixels)
- Sub-structure information
CMS EFT

- Use multiple approaches
 - EFT from cross-section
 - EFT from unfolded distributions
 - EFT from likelihood fits to detector-level data
 - Hybrid

Hybrid dilepton
Top pair and tW
LHC collisions future

3,000 fb⁻¹ by 2035
HL-LHC

Twenty times the current dataset in 15 years

300 fb⁻¹ by 2025
Top to the Extreme

- Top as a background in high-mass searches, Leonid Serkin
- Searches with highly boosted tops, Titas Roy

Top p_T reweighting to data

Treat top in each bin independently