

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Search for scalar top quark pair production in the top corridor region with CMS 13th International Workshop on Top Quark Physics (TOP2020) – Virtual conference – September 2020 Andrea Trapote Fernández - University of Oviedo, on behalf of the CMS Collaboration ICTEA

MOTIVATION

- > The stop quark plays an essential role in understanding the SUSY models.
- > Several searches with the full **Run 2 dataset** have been performed by the CMS Collaboration excluding stop masses up to 1.2 TeV, but most of these searches are not sensitive in the so-called "top corridor".
- All jets: *Eur. Phys. J. C 80 (2020) 3, JHEP 10 (2019) 244*
- Lepton + jets: JHEP 05 (2020) 032
- Dileptons: <u>CMS-PAS-SUS-19-011</u>, <u>JHEP 03 (2019) 101</u>*(top corridor)

still blancked.

- •The mass difference between stop and neutralino is close to the **top mass**.
- •Signal and $t\bar{t}$ background have similar kinematics, especially at low neutralino masses.
- •Signal events can only be detected as an excess on the $t\bar{t}$ cross section.
- •The accurate estimation of $t\bar{t}$ process is very important to have sensitivity.

Fig 1. Diagram of the stop quark pair

production with further decay into a top (antitop) quark and the lightest neutralino.

METHODOLOGY _____

Event selection and strategy

- 2016 dataset is used, corresponding to an integrated luminosity of 35.9 fb⁻¹.
- Opposite-sign eµ pair, $N_i \ge 2$ and $N_b \ge 1$.
- Search for degenerate stop pair production in 3 diagonals: $\Delta m(\tilde{t}, \tilde{\chi}_0^1) = m_t, m_t \pm 7.5 \ GeV$
- Main discriminating variable: M_{T2}(eμ) $M_{T2}(e\mu) = \min_{\vec{p}_{T,1}^{miss} + \vec{p}_{T,2}^{miss} = \vec{p}_{T}^{miss}} (\max[m_{T}(\vec{p}_{T}^{l1}, \vec{p}_{T,1}^{miss}), m_{T}(\vec{p}_{T}^{l2}, \vec{p}_{T,1}^{miss})])$

The M_{T2} variable has an endpoint for $t\bar{t}$ at the W boson mass, so signal events are expected to populate the tails of the distribution.

from MC with an **accurate** knowledge have to sensitivity.

Fig 3. Normalized M_{T2} distribution for $t\bar{t}$ in black and three signal models in other colours.

	 Resul
	No excess is o used.
	Results are pres stop quark pair excluded up to:
	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$
L	
	This result sign searches at the previously unex
ſ	REFER
	DIVIS Collaboration, "Se

M_{T2} (GeV)

sented in terms of **exclusion limits** at 95% confident level for production on simplified models of SUSY. Stop masses

- m(\tilde{t}_1) > 208 GeV for $\Delta m = 175$ GeV.
- m(\tilde{t}_1) > 235 GeV for $\Delta m = 175 7.5$ GeV
- m(\tilde{t}_1) > 242 GeV for $\Delta m = 175 + 7.5$ GeV

inificantly extends the exclusion limits of stop quark e LHC to higher stop masses in this region, that was plored.

RENCES

earch for the pair production of light top squarks in the $e\mu$ final state in at \sqrt{s} = 13 TeV", JHEP **03** (2019) 101, doi:10.1007/JHEP03(2019)101

