

THE TOP-QUARK EW COUPLINGS AFTER LHC RUN2 G. Durieux,¹ M. Miralles,² V. Miralles,² M. Moreno Llácer, ² A. Peñuelas, ² M. Perelló,² M. Vos,² C. Zhang,³ ¹ Physics Department, Technion-Israel Institute of Technology, ² Universitat de València and CSIC, ³Institute of High Energy

Physics, Chinese Academy of Sciences

INTRODUCTION

In this work we present the results of a global fit of the top electro-weak couplings of the top quark to currently available data. The analysis considers the relevant dimension-six (D6) two-fermion operators that affect the top-quark electro-weak couplings in the Standard Model Effective Field Theory. Furthermore, we include, for the first time, the QCD corrections at NLO for most of the processes.

EFFECTIVE FIELD THEORY

► We adopt an EFT description to parametrize the deviations from the SM.

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + O\left(\Lambda^{-4}\right).$$

- The Wilson coefficients can be later interpreted in terms of NP mediators.
- We include Λ^{-2} terms from the interference between the SM and D6 operators.
- We also include Λ^{-4} operators arising from two insertions of D6 operators.
- ► The effects of D8 operators, contributing to the same Λ^{-4} order, are omitted.

SENSITIVITY

► Here we show the sensitivity of each observable with each Wilson coefficient

- ▶ We only consider the EW two-fermion operators and ignore the imaginary parts.
- ► The four-fermion operators are ignored.

The relevant operators, in the Warsaw basis, are:

Left and right-handed couplings of the top and bottom quark to the Z	EW dipole operators			
$O^{3}_{\varphi Q} \equiv \frac{1}{2} \left(\bar{q} \tau' \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}^{\prime}_{\mu} \varphi \right)$	$O_{uW} \equiv \left(\bar{q}\tau'\sigma^{\mu\nu}u\right)\left(\epsilon\varphi^*W'_{\mu\nu}\right)$			
$O_{\varphi Q}^{1} \equiv \frac{1}{2} (\bar{q} \gamma^{\mu} q) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right)^{\prime}$	$O_{dW} \equiv \left(\bar{q} \tau' \sigma^{\mu \nu} d ight) \left(\varphi W'_{\mu u} ight)$			
$O_{\varphi u} \equiv \frac{1}{2} (\bar{u} \gamma^{\mu} u) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right)$	$O_{uB} \equiv (ar{q}\sigma^{\mu u}u)(\epsilon arphi^*B_{\mu u})$			
$O_{\varphi d} \equiv \frac{1}{2} (\bar{d} \gamma^{\mu} d) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right)$	$O_{dB} \equiv (\bar{q}\sigma^{\mu u}d)(\varphi B_{\mu u})$			
Chromo magnetic dipole operators	Top/Bottom yukawa			
$O_{uG} \equiv \left(\bar{q}\sigma^{\mu\nu}T^{A}u\right)\left(\epsilon\varphi^{*}G^{A}_{\mu\nu}\right)$	$O_{uarphi} \equiv (ar{q}u) ig(oldsymbol{arphi} arphi^* oldsymbol{arphi}^\dagger oldsymbol{arphi} ig)$			
$O_{dG} \equiv \left(\bar{q}\sigma^{\mu\nu}T^{A}d\right)\left(\varphi G^{A}_{\mu\nu}\right)$	$O_{darphi} \equiv (ar{q}d) ig(arphi \ arphi^{\dagger} arphi ig)$			
Charged current interaction				
$O_{\varphi u d} \equiv \frac{1}{2} (\bar{u} \gamma^{\mu} d) (\varphi^{\mu} d)$	$f \epsilon i D_{\mu} \varphi)$			

► The operators that are written in gray are not included in the fit.

- The observables of the right part (after the dotted-dashed line) are not included because cross-section measurements are not available yet.
- ► The $pp \rightarrow t\bar{t}$ process is also omitted in the fit in order to be consistent as it is used to reduce the dependence of $pp \rightarrow t\bar{t}X$ on Wilson coefficients that have not been included.

RESULTS OF THE FIT

Uncertainty from individual constraints per observable.

Following the prescriptions of the LHC top physics Working Group [1] we will work with $O_{\varphi Q}^{-}$ instead of $O_{\varphi Q}^{1}$ and O_{xZ} instead of $O_{xB}(x = u, d)$:

 $O_{\varphi Q}^{1} \to O_{\varphi Q}^{-} = O_{\varphi Q}^{1} - O_{\varphi Q}^{3}; \qquad O_{xB} \to O_{xZ} = -\sin\theta_{W}O_{xB} + \cos\theta_{W}O_{xW}$

METHOD & DATA

- The dependence of the observables included in the fit on the Wilson coefficients is calculated at NLO in QCD with the Monte Carlo generator MG5_aMC@NL0 [2].
- ► We have used the SMEFT@NL0 UFO [3] model for all the observables except C_{bW} , $C_{\varphi tb}$, C_{bZ} and $C_{\varphi b}$ where the TEFT_EW UFO [4] model was used
- The fit is performed as a Bayesian statistical analysis of the model using the open source HEPfit.

The observables included in the fit are the following:

Process	Observable	\sqrt{s}	$\int \mathcal{L}$	Experiment	Parametrisation @
$pp \rightarrow t\bar{t}H$	cross section	13 TeV	140 fb ⁻¹	ATLAS [5]	NLO
$pp \rightarrow t\bar{t}W$	cross section	13 TeV	36 fb ⁻¹	CMS [6]	NLO
$pp \rightarrow t\bar{t}Z$	(differential) x-sec.	13 TeV	140 fb ⁻¹	ATLAS	NLO
$pp \rightarrow t\bar{t}\gamma$	(differential) x-sec.	13 TeV	140 fb ⁻¹	ATLAS	NLO
$pp \rightarrow tZq$	cross section	13 TeV	140 fb ⁻¹	CMS	NLO
$pp \rightarrow t\gamma q$	cross section	13 TeV	36 fb ⁻¹	CMS	NLO
$pp \rightarrow tb$ (s-ch)	cross section	8 TeV	20 fb ⁻¹	ATLAS+CMS	NLO
$pp \rightarrow tW$	cross section	8 TeV	20 fb ⁻¹	ATLAS+CMS	LO
$pp \rightarrow tq$ (t-ch)	cross section	8 TeV	20 fb ⁻¹	ATLAS+CMS	NLO
$t \rightarrow W^+ b$	<i>F</i> ₀ , <i>F</i> _{<i>L</i>}	8 TeV	20 fb ⁻¹	ATLAS+CMS	LO
$e^-e^+ ightarrow bar{b}$	$m{R}_b$, $m{A}_{FBLR}^{bb}$	~ 91 GeV	202.1 pb ⁻¹	LEP	LO

CONCLUSIONS

- ► All results compatible with $C_i = 0$ (SM) within 68% probability.
- We expect that the preliminary differential cross section measurements for $t\bar{t}Z$ and $t\bar{t}\gamma$ can improve the limit on C_{tZ} by a factor two.
- LEP EW precision measurements provide tight individual bounds on several

operators; in the global fit the impact is a factor two improvement of the bound on the left-handed coupling $C_{\omega Q}^{-}$.

These limits are the most stringent bounds on the top EW couplings from an EFT analysis that includes all relevant two-fermion degrees of freedom [8-10].

REFERENCES [1] arXiv:1802.07237. [2] JHEP 07 (2014) 079 [3] arXiv:2008.11743 [4] JHEP 05 (2016) 052 [5] https://atlas.cern

[6] http://cms.web.cern.ch [7] JHEP12(2019)098 [8] JHEP 04 (2019) 100 [9] JHEP 02 (2020) 131 [10] CMS-PAS-TOP-19-001

ACKNOWLEDGEMENTS

MP and MV are supported by the Spanish national program for particle physics, project FPA2015-65652-C4-3-R (MINECO/FEDER), and PROMETEO grant 2018/060 of the Generalitat Valenciana. VM and AP are supported by the Spanish Government and ERDF funds from the EU Commission [Grant FPA2017-84445-P], the Generalitat Valenciana [Grant Prometeo/2017/053], the Spanish Centro de Excelencia Severo Ochoa Pro- gramme [Grant SEV-2014-0398] and the DFG cluster of excellence "Origin and Structure of the Universe". The work of VM and AP is funded by Ministerio de Ciencia y Innovacipain [Grant FPU16/01911] and [Grant FPU15/05103] respectively. The work of MML and MM is funded by "La Caixa" Foundation [Grant LCF/BQ/PI19/11690014].