NLO QCD corrections to off-shell $\ensuremath{t\overline{t}W^+}\xspace$ production at the LHC

Ansgar Denner, Giovanni Pelliccioli Institut für Theoretische Physik, Universität Würzburg

BASED ON ARXIV:2007.12089[HEP-PH]

Motivations

- \bullet One of the heaviest signatures at LHC (SM/BSM).
- \bullet Relevant background for ttH production at the LHC.
- Improved theory modeling needed to compare with data.
- So far on-shell calculations, only recently a first off-shell one appeared [Bevilacqua et al. 2005.09427].

We present an independent computation of the **complete NLO QCD corrections to off-shell t** $\overline{t}W^+$ in the channel pp $\rightarrow e^+\nu_e \mu^- \overline{\nu}_\mu \tau^+ \nu_\tau b \overline{b}$, including full off-shell effects, spin-correlations, interferences [Denner, Pelliccioli 2007.12089].

Setup of the simulations

Details of the calculation

At LO $(\alpha_s^2 \alpha^6)$ only $q\bar{q}$ channel, dominated by $t\bar{t}$ resonances. At NLO $(\alpha_s^3 \alpha^6)$ integration of real corrections challenging (large multiplicity, 2 \rightarrow 9), virtual corrections feature up to 7-point one-loop amplitudes.

Integrated cross-sections

- Full tree-level $(g_s^2 g^6, g_s^3 g^6)$ and one-loop $(g_s^4 g^6)$ amplitudes with RECOLA [Actis et al. 1605.01090]
- Integration with MoCANLO in-house Monte Carlo
- Dipole subtraction scheme [Catani, Seymour 9605323]
- Complex-mass scheme [Denner et al. 9904472]
- NNPDF3.1 (N)LO PDFs [Ball et al. 1706.00428], $N_F = 5$
- Selections: 2 b-jets (anti- k_t , R = 0.4, $p_{T,b} > 25$ GeV, $|\eta_b| < 2.5$), 3 ch. leptons ($p_{T,\ell} > 27$ GeV, $|\eta_\ell| < 2.5$, $\Delta R_{\ell b} > 0.4$).

Differential results

Flatter corrections for dynamical scale choices.

Fig.: azimuthal separation between positron and muon.

Different scale choices (fixed, dynamical) give **between** +7% and +25% corrections to the total cross-section. Scale uncertainties significantly reduced at NLO.

central scale	LO	NLO QCD	K-factor
$\mu_0^{(a)} = M_t + M_W/2$	$0.2042(1)^{+23.8\%}_{-18.0\%}$	$0.2452(7)^{+4.5\%}_{-6.8\%}$	1.20
$\mu_0^{\rm (b)} = H_{\rm T}/2$	$0.1931(1)^{+23.0\%}_{-17.5\%}$	$0.2330(9)^{+4.2\%}_{-6.5\%}$	1.21
$\mu_0^{\rm (c)} = H_{\rm T}/3$	$0.2175(1)^{+24.2\%}_{-18.2\%}$	$0.2462(8)^{+2.8\%}_{-5.8\%}$	1.13
$\mu_0^{(d)} = \left(M_{T,t} M_{T,\bar{t}} \right)^{1/2}$	$0.1920(1)^{+23.0\%}_{-17.5\%}$	$0.2394(6)^{+5.4\%}_{-7.2\%}$	1.25
$\mu_0^{(e)} = \left(M_{T,t} M_{T,\bar{t}}\right)^{1/2} / 2$	$0.2360(1)^{+24.9\%}_{-18.7\%}$	$0.2535(8)^{+3.4\%}_{-5.2\%}$	1.07

Double-pole approximation

Two different **calculations**: applied DPA($t\bar{t}$) only to virtual corrections or also to integrated dipoles *I*-operators.

Moderate shape distortion due to NLO corrections. Large K-factor in some distribution tails, *e.g.* large $p_{T,bb}$.

Impressive agreement for DPA virtual only (small virt. corrections). Larger discrepancies in off-shell regions if DPA applied to *I*-operators.

Conclusion

NLO QCD corrections (about 20% at integrated level) reduce scale uncertainties. Some distributions: much larger *K*-factors in suppressed phase-space regions. Double-pole approx. leads to a few % agreement with full calculation (integrated level). The discrepancy reaches 10% and more in regions not dominated by resonant $t\bar{t}$.

POSTER PRESENTED BY GIOVANNI PELLICCIOLI AT THE 13th INTERNATIONAL WORKSHOP ON TOP-QUARK PHYSICS, 14-18 SEPTEMBER 2020.