Joker Talk

When charm and beauty adjoin the top

First measurement of the cross section of top quark pair production with additional charm jets using the dilepton final state in pp collisions at $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$

Seth Moortgat

Interuniversity Institute for High Energies (IIHE)
Vrije Universiteit Brussel
seth.moortgat@cern.ch
On behalf of the CMS Collaboration

PAS-TOP-20-003

Motivation for measuring $\mathrm{t} \overline{\mathrm{t}}+\mathrm{HF}$

 Lessons from the past

Throwback: TOP2018 - Bad Neuenahr

Poster session:

t $\mathrm{t} b \overline{\mathrm{~b}}$ in the SMEFT using ML

Plenaries:

> Theory progress on t̄t$H(b \bar{b})$ backgrounds (S. Pozzorini)
> ttbb̄ @ CMS and ATLAS (A. Khanov)

Take-home messages (with personal bias):

1. Theoretical modelling of $t \bar{t}+$ heavy-flavour (HF) jets is hard! (but if affects the $t \bar{t} H(b \bar{b})$ measurement)
2. You can not simply consider ttbb \bar{b} without considering at the same time $t \bar{t} c \bar{c}$ and $t \bar{t}+$ light-flavour jets ($t \bar{t} L F)$.
3. Not only b-tagging, but c-tagging is crucial!

First measurement of the inclusive $t \bar{t} c \bar{c}$ cross section

Simultaneously measure $\sigma(\mathrm{tt} \bar{c} \bar{c}), \sigma(\mathrm{ttb} \overline{\mathrm{b}}), \sigma(\mathrm{tt} L F)$
and $\mathrm{R}_{\mathrm{c} / \mathrm{b}}=\sigma(\mathrm{tt}+\mathrm{c} \overline{\mathrm{c}} / \mathrm{b} \overline{\mathrm{b}}) / \sigma(\mathrm{t} \overline{\mathrm{t}}+\mathrm{j})$
Measurement performed in the dilepton channel
Data collected by CMS in 2017, corresponding to $41.5 \mathrm{fb}^{-1}$ of integrated luminosity

Key ingredients:
Use neural network for matching jets to partons.
Rely on charm-jet identification to separate the different signals!
Calibrate the c-tagger discriminants (full shape)

Signal definition

Fiducial and full phase space

Definition of heavy-flavor jets

Heavy-flavor definition in simulation based on ghost hadron clustering Phys.Lett.B 659 (2008) 119-126

Fiducial phase space

- $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t} j} \rightarrow \ell^{+} \overline{v_{\ell}} \mathrm{b} \ell^{-} v_{\ell} \overline{\mathrm{b} j j}$ (dilepton)
- Two generated leptons with $p_{T}>25 \mathrm{GeV}$ and $|\eta|<2.4$ (electron/muon/tau)
- Two particle-level b jets from top quark decay with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.4$
- At least two additional particle-level jets (not from top quark decay) with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.4$ and $\Delta R(1, j e t)>0.4$

Full phase space

$$
\begin{aligned}
& \mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{jjj}} \rightarrow \mathrm{~W}^{+} \mathrm{bW} \mathrm{~W}^{-} \overline{\mathrm{b} j} \\
& \text { dilepton / single lepton / all-hadronic }
\end{aligned}
$$

Categorization based on flavor of additional jets

- tttb $\quad \geq 2$ add. b jets with at least one b hadron
- ttbl: 1 add. b jet with at least one b hadron (merged or missing jet)
- ttcce $\quad \geq 2$ add. c jets with at least one c hadron (if not ttbb $/ \mathrm{ttbL}$)
- tt̄cL: 1 add. c jet with at least one c hadron (if not ttbb $\overline{\mathrm{b}} / \mathrm{L}$, merge/missing jet)
- tt̄LF: no add. b or c jets, but 2 add. light jets pass acceptance requirements.
- tt̄ other: failing visible/full phase space requirements

Event selections

Dileptonic top quark pair events +2 additional jets

Global

\quad| | $==2$ isolated leptons (e / μ) |
| ---: | :--- |
| $>$ | $=4$ jets |
| $>$ | $=2$ b-tagged jets |

Electrons

$\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$
$|\eta|<2.4$
$|\eta| \notin[1.4442-1.566]$
("transition region")
Rel. Iso < 0.15
Muons

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV} \\
& |\eta|<2.4 \\
& \text { Rel. Iso }<0.15
\end{aligned}
$$

Dilepton invariant mass

$$
\begin{aligned}
& m_{\|}>12 \mathrm{GeV} \\
& \mu \mu / e e: \mathrm{m}_{\| \mid} \notin\left[\mathrm{m}_{\mathrm{z}}-15 \mathrm{GeV}\right. \\
& \left., \mathrm{m}_{\mathrm{z}}+15 \mathrm{GeV}\right]
\end{aligned}
$$

Jets
$\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$
$|\eta|<2.5$
ΔR (lepton,jet) >0.5
DeepCSV value > 0
b-jets/c-jets
2 top-matched jets: Medium DeepCSV b-tagged

Results in $>95 \%$ t̄̄ events

Event kinematics + jet flavour as input to a neural network (NN)

\rightarrow Combine in a NN and pick the best jet-parton assignment

Jet-parton matching

Performance and neural network output

Only ~ 76\% of events have two b jets matched to two gen-level b quarks from top quark within $\Delta R<0.3$. Only these are used in the training of the NN.

The network correctly identifies the two additional c (b) jets in 50% (30%) of the cases for $t \bar{t} c \bar{c}(t \mathrm{t} b \overline{\mathrm{~b}})$ events.

Good agreement between the data (black markers) and the simulation (filled histograms).

Two hidden layers that comprise 50 neurons each, with ReLu activation functions and a 10\% dropout

NN score for best permutation

$$
=\max \left(\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}+P_{W}}, \frac{\mathrm{P}_{\mathrm{F}}}{\mathrm{P}_{\mathrm{F}}+P_{W}}\right)
$$

c-tagger calibration
 Charm jet identification using the DeepCSV algorithm

The DeepCSV heavy-flavour tagging algorithm is a multi-class algorithm that predicts probabilities (P) for jets to originate from a b, c or light-flavour (udsg) quark (or gluon).

This discrimination is based on properties such as track displacement, secondary vertex mass/flight distance, ...

Properties from c jets are distributed midway between those of b or light-flavour jets \rightarrow two c-tagging discriminants!

JINST 13 (2018) P05011

$$
\mathrm{P}(\mathrm{CvsL})=\frac{\mathrm{P}(\mathrm{c})}{\mathrm{P}(\mathrm{c})+\mathrm{P}(\mathrm{udsg})}, \quad \mathrm{P}(\mathrm{CvsB})=\frac{\mathrm{P}(\mathrm{c})}{\mathrm{P}(\mathrm{c})+\mathrm{P}(\mathrm{~b})+\mathrm{P}(\mathrm{bb})} .
$$

To use these discriminants in a neural network, the 2-dim shape in simulations needs to be calibrated to the data!

> Novel shape calibration of the two-dimensional CvsL and CvsB DeepCSV c-tagger discriminators

c-tagger calibration

Three control regions for flavor enrichment

W+charm
 semi-leptonic $t \bar{t}$

c-enriched (93\% pure)
(after OS-SS subtraction)

b-enriched (81\% pure)

DY + jets

light-enriched (86\% pure)

Very good purity in different control regions!
Iterative fitting procedure per (2-dim.) bin, by iterating multiple times over the three control regions $\rightarrow 2$-dim SF maps i.e. SF(CvsL, CvsB, flavour)

c-tagger calibration

 Effect of the calibration on the additional jet CvsL/CvsB

c-tagger calibration

 Effect of the calibration on the additional jet CvsL/CvsB

Template fit using NN discriminator Sensitive observables to distinguish between tttcc, ttb $\bar{b}, t \bar{t} L F$

CvsB add. Jet 2

CvsL add. Jet 1
13 TeV

CvsL add. Jet 2

ΔR (add. Jets)

Template fit using NN discriminator Defining the neural network

one hidden layer that comprises 30 neurons with
ReLu activation functions and a 10\% dropout
CvsL add. jet 1
CvsL add. jet 2
CvsB add. jet 1
CvsB add. jet 2
Parton match NN
ΔR (add. Jets)

$$
\begin{aligned}
& \mathrm{P}(\mathrm{tt} c \bar{c}) \\
& \mathrm{P}(\mathrm{t} \overline{\mathrm{t}} \mathrm{~L}) \\
& \mathrm{P}(\mathrm{t} \overline{\mathrm{t} b} \overline{\mathrm{~b}}) \\
& \mathrm{P}(\mathrm{tt} \mathrm{t} \mathrm{~L}) \\
& \mathrm{P}(\mathrm{t} \overline{\mathrm{t}} \mathrm{LF})
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{b}^{c} & =\frac{\mathrm{P}(t \bar{t} c \bar{c})}{\mathrm{P}(t \bar{t} c \bar{c})+\mathrm{P}(t \bar{t} b \bar{b})} \\
\Delta_{L}^{c} & =\frac{\mathrm{P}(t \bar{t} \bar{c})}{\mathrm{P}(t \bar{t} c \bar{c})+\mathrm{P}(t \bar{c} \mathrm{t} \mathrm{LF})}
\end{aligned}
$$

Δ_{b}^{c} and Δ_{L}^{c} can be interpreted as topology-specific ctagger discriminants

Information on the flavour of the two additional jets
Additional information on the event kinematics to most optimally distinguish different signal categories

Template fit using NN discriminator

Templates from simulated top quark pair events

Constructed to separate t $\overline{t c} \bar{c}$ from ttbb events

13 TeV

Constructed to separate t $\bar{t} \bar{c} \bar{c}$ from t $\overline{\mathrm{t}} \mathrm{LF}$ events

Fitting these templates to the data allows to extract the cross sections for each of the signal processes

Template fit using NN discriminator

Two-dimensional simulated templates used in the fit

The fit is performed on two-dimensional distributions

Clear separation between the t $\bar{t} b \bar{b}, \mathrm{t} \overline{\mathrm{c}} \mathrm{c} \bar{c}$ and $\mathrm{t} \overline{\mathrm{L}} \mathrm{LF}$ contributions

Template fit using NN discriminator

Fits to extract inclusive cross sections and their ratios

Full phase space

Template fit using NN discriminator

Impact of the systematic uncertainties on parameters of interest

numbers in \%	fiducial phase space				
	$\Delta \sigma_{\mathrm{tt} \bar{c}}$	$\Delta \sigma_{\text {tetb }}$	$\Delta \sigma_{\text {tett }}$	$\Delta \mathrm{R}_{\mathrm{c}}$	$\Delta \mathrm{R}_{\mathrm{b}}$
Jet energy scale	7.3	3.3	5.7	3.2	3.4
Jet energy resolution	1.4	0.3	1.2	2.1	1.2
c-tagging calibration	6.7	6.9	2.2	6.9	7.4
Lepton id and isolation	1.3	1.2	1.2	0.2	0.1
Trigger	2.0	2.0	2.0	< 0.1	< 0.1
Pileup	1.2	0.8	0.7	1.6	0.4
Total integrated luminosity	2.4	2.3	2.3	<0.1	<0.1
μ_{R} and μ_{F} - ccales in ME	4.3	2.4	0.8	4.1	2.7
Parton shower scale	0.4	1.0	0.1	0.4	$0.9{ }^{--1}$
PDF α_{5}	0.5	≤ 0.1	0.1	0.4	0.1
Matching ME-PS (hdamp)	6.5	4.9	3.1	2.9	1.4
	1.2	1.3	0.7	0.3	0.4
$t \bar{t} \mathrm{bL}(\mathrm{cL}) / \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ ($\mathrm{c} \overline{\mathrm{c}})$ and $\mathrm{t} \overline{\mathrm{t}}+$ other $/ \mathrm{t} \overline{\mathrm{t}} \mathrm{LF}$	2.4	1.7	1.2	2.0	1.5
Efficiency (theoretical)	2.0	2.0	2.0	<0.1	< 0.1
Simulated sample size	4.3	2.7	1.1	4.2	2.7
Background normalisation	0.7	0.1	0.5	0.2	0.5

Dominant experimental uncertainties from c-tagging calibration and JES Dominant theoretical uncertainties from QCD scales in the ME and ME-PS matching

Results

Comparison between the prefit and the postfit distributions

Two-dimensional distributions are unrolled onto a one-dimensional histogram 4×4 binning results in 16 bins with varying flavor composition:

$$
\Delta_{\mathrm{L}}^{\mathrm{c}} \otimes \Delta_{\mathrm{b}}^{\mathrm{c}}:[0,0.45,0.6,0.9,1.0] \otimes[0,0.3,0.45,0.5,1.0]
$$

μ represent the signal strength, related to the cross section: $\sigma=\frac{\mu \mathrm{X} N^{M C}}{\mathcal{L}^{\text {int } \times \epsilon}}$

Results

Inclusive cross sections in the fiducial phase space

Some tension observed, but overall agreement within 1-2 standard deviations \rightarrow measured $\mathrm{t} \mathrm{tb} \overline{\mathrm{b}}$ (tt$c \overline{\mathrm{c}}$ and t t FF) cross section higher (lower) than predicted.

Ratios R_{c} and R_{b} in the fiducial phase space

R_{c} is in very good agreement with theory prediction.

Largest tension observed for R_{b}

$$
-\Delta \log L \sim 3 \rightarrow \sim 2.5 \sigma
$$

Results

Numerical values + extrapolation to the full phase space

Result Uncertainty POWHEG MG5_AMC@NLO

Fiducial phase space				
$\sigma_{\text {titc }}$ [pb]	0.152	± 0.022 (stat.) ± 0.019 (syst.)	0.187 ± 0.030	0.188 ± 0.026
$\sigma_{\text {tit }} \overline{\text { b }}$ [pb]	0.120	± 0.009 (stat.) ± 0.012 (syst.)	0.0977 ± 0.016	0.101 ± 0.014
$\sigma_{\text {tute }}$ [pb]	5.06	± 0.11 (stat.) ± 0.41 (syst.)	5.95 ± 0.79	6.32 ± 0.79
R_{c} [\%]	2.37	± 0.32 (stat.) ± 0.25 (syst.)	2.53 ± 0.06	2.43 ± 0.06
$\overline{\mathrm{R}}_{\mathrm{b}}$ [\%]	1.87	± 0.14 (stat.) ± 0.16 (syst.)	1.31 ± 0.03	1.30 ± 0.03

Full phase space

$\sigma_{\text {teltec }}$ [pb]	7.43	± 1.07 (stat.) ± 0.95 (syst.)	9.15 ± 1.44	8.92 ± 1.26
$\sigma_{\text {ttb }} \overline{\text { b }}$ [pb]	-	± 0.32 (stat.) ${ }^{\text {I }}$	3.35 ± 0.54	$3.39{ }^{\text {a }}$
$\sigma_{\text {titit }}[\mathrm{pb}]$	217.0	± 4.6 (stat.) ± 18.1 (syst.)	255.1 ± 32.0	260.6 ± 32.8
${ }^{-1} \mathrm{R}_{\mathrm{c}}$ [\%]	2.64	± 0.36 (stat.) ± 0.28 (syst.)	2.82 ± 0.07	2.72 ± 0.05
$\overline{\mathrm{R}}_{\mathrm{b}}^{-}$- ${ }^{\text {[}}$]	1.47		$1.0 \overline{3}-0.0 \overline{3}$	$1.03{ }^{-0} 000$

Summary in the fiducial phase space (visual)

Fiducial Phase Space
CMS Preliminary
$41.5 \mathrm{fb}^{-1}$ (13 TeV)
$\xrightarrow[H]{\rightarrow-1}$ stat. only []
stat. \oplus syst. I I
\square Powheg + Pythia
$\square \begin{aligned} & \text { MG5_aMC@NLO } \\ & \text { + Pythia }\end{aligned}$

Conclusion

First measurement of the $t \bar{t}+c \bar{c}$ cross section!

```
Fiducial PS: \(\quad \sigma(\mathrm{t} \overline{\mathrm{t}}+\mathrm{c} \overline{\mathrm{c}})=152 \pm 22\) (stat.) \(\pm 19\) (syst.) fb ( \(\sim 19 \%\) uncertainty)
\(R c=2.37 \pm 0.32\) (stat.) \(\pm 0.25\) (syst.) \% ( \(\sim 17 \%\) uncertainty)
\(\sigma(\mathrm{t} \overline{\mathrm{t}}+\mathrm{c} \overline{\mathrm{c}})=7.43 \pm 1.07\) (stat.) \(\pm 0.95\) (syst.) pb
\(R c=2.64 \pm 0.36\) (stat.) \(\pm 0.29\) (syst.) \%
```

Simultaneous extraction $\sigma_{\mathrm{t} \overline{\mathrm{t}} \overline{\mathrm{c}}}, \sigma_{\mathrm{t} \mathbf{t} \mathrm{b} \overline{\mathrm{b}}}, \sigma_{\mathrm{tt} \mathrm{tF}}, \mathrm{R}_{\mathrm{b}}=\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{b}} / \sigma_{\mathrm{t} \overline{\mathrm{t} j \mathrm{j}}}$ and $\mathrm{R}_{\mathrm{c}}=\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{c} \overline{\mathrm{c}}} / \sigma_{\mathrm{t} \overline{\mathrm{t} j}}$ \rightarrow Fully coherent treatment of different jet flavours in $t \bar{t}+2$ jets!

Some tension observed, but cross sections $\sigma(\mathrm{ttb} \overline{\mathrm{b}}), \sigma(\mathrm{t} \overline{\mathrm{t}} \mathrm{c} \overline{\mathrm{c}})$ and $\sigma(\mathrm{t} \overline{\mathrm{t}} \mathrm{F})$ are consistent with Powheg predictions within ~1-2 σ.

Ratio R_{c} is consistent with predictions, whereas R_{b} is found to be higher than predicted, corresponding to $\sim 2.5 \sigma$.

Higher observed $\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}}\left(\right.$ or $\left.\mathrm{R}_{\mathrm{b}}\right)$ is consistent with previous t $\bar{t} \mathrm{~b} \overline{\mathrm{~b}}$ analyses.
For the first time, we also see that $t \bar{t} c \bar{c}$ and $t \bar{t} L F$ are slightly overestimated in simulations (but within uncertainties)

Measurement of $\mathrm{t} \overline{\mathrm{t}}+\mathrm{c} \mathrm{\bar{c}}$ production A roadmap towards a successful measurement

(1) c, b and t quarks require jets and heavy flavor tagging (new c-tagger)

(2) Improved ML techniques for HF tagging (DeepCSV/DeepJet)
(6) Resulting cross section measurement

(5) Differentiating $t \bar{t}+H F$ categories (ML classifier)

(4) Selection and reconstruction of the t $\bar{t}+\mathrm{HF}$ topology (jet-parton match) 25

Motivation for measuring $\mathrm{t} \overline{\mathrm{t}}+\mathrm{HF}$ Theoretical modelling

Theory predictions / Simulation of the $t \bar{t}+\mathrm{HF}$ final state is highly non-trivial. It deals with very different scales from the top quark mass down to momenta of the relatively soft additional jets

1. Matrix Element vs Parton Shower
2. LO vs NLO (large k-factor, depending on scale choice)
3. Factorization/Renormalization/Shower scales
4. Inclusive $t \bar{t}+j e t s$ versus separate $t \bar{t} b \bar{b}$ and $t \bar{t} c \bar{c} \bar{c}$ sim.

Motivated CMS and ATLAS to measure $t \bar{t}+b \bar{b}$ [arXiv:1411.5621, 1705.10141, 2003.06467, 1909.05306, 1304.6386, 1508.06868, 1811.12113]

t̄̄cc̄ has not been measured experimentally!

S. Pozzorini, Theory progress ont $\bar{t} H(b \bar{b})$ background, TOP2018 @ Bad Neuenahr, Germany
softer b-quarks
$t \bar{t}+\mathrm{PS}$

$t \bar{t} g+\mathrm{PS}$ $b^{b} \quad$ harder b-quarks

Motivation for measuring $\mathrm{t} \overline{\mathrm{t}}+\mathrm{HF}$ Interplay between Higgs boson and top/bottom quarks

$$
\text { measurement of } \mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}) \text { arXiv:1804.03682 }
$$

observed (expected) significance of 1.6 (2.2)

$t \bar{t} H(H \rightarrow b \bar{b})$ suffers from an irreducible background of (gluoninduced) t $\bar{t} b \bar{b}$ and $t \bar{t} c \bar{c}$ (through mistags) events!

Results

Comparison to other ttbb analyses

	Result	Uncertainty	POWHEG	MG5-AMC@NLO
Fiducial phase space				
$\sigma_{\text {ttace }}$ [pb]	0.152	± 0.022 (stat.) ± 0.019 (syst.)	0.187 ± 0.030	0.188 ± 0.026
$\sigma_{\text {titb }}[\mathrm{pb}]$	0.120	± 0.009 (stat.) ± 0.012 (syst.)	0.097 ± 0.016	0.101 ± 0.014
$\sigma_{\text {titit }}[\mathrm{pb}]$	5.06	± 0.11 (stat.) ± 0.41 (syst.)	5.95 ± 0.79	6.32 ± 0.79
R_{c} [\%]	2.37	± 0.32 (stat.) ± 0.25 (syst.)	2.53 ± 0.06	2.43 ± 0.06
R_{b} [\%]	1.87	± 0.14 (stat.) ± 0.16 (syst.)	1.31 ± 0.03	1.30 ± 0.03
Full phase space				
$\sigma_{\text {titce }}[\mathrm{pb}]$	$\mathrm{r}^{7} 43$		9.15 ± 1.44	8.92 ± 1.26
$\sigma_{\text {titb } \bar{b}}[\mathrm{pb}]$	14.12	± 0.32 (stat.) ± 0.42 (syst.)	3.35 ± 0.54	3.39 ± 0.49
$\sigma_{\text {titir }}[\mathrm{pb}]$	217.0	士 4.6 (stat.) ${ }^{\text {a }} \pm 18.7$ (syst.)	255.1 ± 32.0	260.6 ± 32.8
R_{c} [\%]	${ }^{2} 64$	± 036 (stat) ± 0.28 (syst.)	2.82 ± 0.07	2.72 ± 0.05
R_{b} [\%]	-1.47	± 0.11 (stat.) ± 0.13 (syst.)	1.03 ± 0.03	1.03 ± 0.02

PAS-TOP-20-003 $+2.5 \sigma$

TOP-18-011	Fiducial, parton-independent (pb)	$\begin{gathered} \text { Fiducial, } \\ \text { parton-based (pb) } \end{gathered}$	Total (pb)	$+2.1 \sigma$
Measurement	$1.6 \pm 0.1_{-0.4}^{+0.5}$	$1.6 \pm 0.1_{-0.4}^{+0.5}$	$\int 5.5 \pm 0.3_{-1.3}^{+1.6}$	
POWHEG ($\mathrm{t} \overline{\mathrm{t}}$)	1.1 ± 0.2	1.0 ± 0.2	3.5 ± 0.6	
POWHEG (tı̄) + HERWIG++	0.8 ± 0.2	0.8 ± 0.2	3.0 ± 0.5	
MadGraph5amc@nlo (4FS t̄̄b $\overline{\mathrm{b}}$)	0.8 ± 0.2	0.8 ± 0.2	2.3 ± 0.7	
MadGraph5_amc@nlo (5FS tit + jets, FxFx)	1.0 ± 0.1	1.0 ± 0.1	3.6 ± 0.3	

TOP-16-010

Phase space		$\sigma_{\text {ttbb }}[\mathrm{pb}]$	$\sigma_{\text {titj }}[\mathrm{pb}]$	$\sigma_{\text {tttb } \bar{b}} / \sigma_{\text {titj }}$
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7 \pm 0.1 \pm 0.7$	$0.024 \pm 0.003 \pm 0.007$
Visible	SM (POWHEG)	$0.070+0.009$	5.1 ± 0.5	0.014 ± 0.001
Full	Measurement SM (POWHEG)	$\left(\begin{array}{l} 4.0 \pm 0.6 \pm 1.3 \\ -2.2 \pm 0.4 \end{array}\right.$	$\begin{gathered} 184 \pm 6 \pm 33 \\ 257 \pm 26 \end{gathered}$	$\stackrel{0.022 \pm 0.003 \pm 0.006}{0.012 \pm} \begin{gathered} 0.001 \\ 0 \end{gathered}$

Jet-parton matching

Performance and neural network output

- Neural network trained with Keras (TensorFlow backend)
- 26 inputs (Standard Normalization, $\mu=0, \sigma=1$) \rightarrow see backup
- 2 hidden layers with 50 neurons each and ReLu activation
- 10% Dropout in each hidden layer (regularization)
- 3 outputs with SoftMax activation
- Correctly matched
- Flipped matching
- Wrong matching
- Loss function = categorical cross-entropy
- Optimizer = Stochastic Gradient Decent
learning rate (init) $=0.001$, decay $=$ init $/\left(5^{*}\right.$ n_epoch), , nesterov momentum $=0.8$
- \quad n_epoch $=100$, batch_size $=128$
- Weights added after 30 epochs (ttbb/ttcc $=20, \mathrm{ttbL}=10, \mathrm{ttcL}=5, \mathrm{ttLL}=1$)

jet p_{T}	jet η	$b-\operatorname{tag}$	$\operatorname{CvsL} c-\operatorname{tag}$	$\operatorname{CvsB} c-\operatorname{tag}$	$m_{\text {inv }}$	$\Delta \mathrm{R}$
$p_{T}\left(b_{t}\right)$	$\eta\left(b_{t}\right)$	$\operatorname{BvsAll}\left(b_{t}\right)$	$\operatorname{CvsL}\left(b_{t}\right)$	$\operatorname{CvsB}\left(b_{t}\right)$	$m_{\text {inv }}\left(b_{t}, \ell^{+}\right)$	$\Delta \mathrm{R}\left(b_{t}, \ell^{+}\right)$
$p_{T}\left(b_{\bar{t}}\right)$	$\eta\left(b_{\bar{t}}\right)$	$\operatorname{BvsAll}\left(b_{\bar{t}}\right)$	$\operatorname{CvsL}\left(b_{\bar{t}}\right)$	$\operatorname{CvsB}\left(b_{\bar{t}}\right)$	$m_{i n v}\left(b_{\bar{t}}, \ell^{-}\right)$	$\Delta \mathrm{R}\left(b_{\bar{t}}, \ell^{-}\right)$
$p_{T}\left(j_{1}\right)$	$\eta\left(j_{1}\right)$	$\operatorname{BvsAll}\left(j_{1}\right)$	$\operatorname{CvsL}\left(j_{1}\right)$	$\operatorname{CvsB}\left(j_{1}\right)$	$m_{i n v}\left(j_{1}, j_{2}\right)$	$\Delta \mathrm{R}\left(j_{1}, j_{2}\right)$
$p_{T}\left(j_{2}\right)$	$\eta\left(j_{2}\right)$	$\operatorname{BvsAll}\left(j_{2}\right)$	$\operatorname{CvsL}\left(j_{2}\right)$	$\operatorname{CvsB}\left(j_{2}\right)$		

Template fit using NN discriminator

 Unrolling the 2 -dim. templates into 1 -dim. histograms
Unrolling 2D histogram into 1D

4×4 binning results in 16 bins with varying flavor composition

Bins $1-4$: $\Delta_{L}^{c} \in[0,0.45]$, and increasing bins in Δ_{b}^{c}

Template fit using NN discriminator

Comparison between data and simulation (prefit)

Template fit using NN discriminator Systematic uncertainties

Normalization only:

Luminosity (2.3\%)
background normalization (25\%)
Efficiency (theoretical) (2\%)
Fixed ratios from MC (ttbL/ttbb, ttcL/ttcc, tt other/ttLF)
Bin-by-bin statistical uncertainty (MC)

Shape + normalization:
JES, JER
lepton ID/iso/reco/trigger
Pileup
c-tagging calibration

Shape only:

$\mu_{\mathrm{R}}, \mu_{\mathrm{F}}$ in ME generator
ISR+FSR: α_{s} in PS
Parton distribution function
Matching between ME/PS
Underlying event Tune
B-Fragmentation (not considered for now)

These experimental uncertainties affect the overall efficiency from the fiducial to the reconstructed phase space, but do not change the shapes of the simulated templates.

On top of affecting the selection efficiency, these experimental uncertainties also change the shapes of the templates.

For these theoretical uncertainties, only the change in shape of the templates and their impact on the acceptance is considered in the extraction of the results. Their impact on the yield is quoted as an uncertainty on the theory prediction to which the measurement is compared.

Template fit using NN discriminator

Fits to extract inclusive cross sections and their ratios

- Two fits, one to extract the inclusive cross sections, one to extract their ratios
- Systematic uncertainties as nuisance parameters in the fit
- Fit is performed simultaneously in the ee/ $\mu \mu$ and e μ channels
- $t \bar{t} c L$ ($\mathrm{t} \boldsymbol{t b L} / \mathrm{t} \bar{t}$ other) scaled with the same factor as $\mathrm{t} \overline{\mathrm{t}} \overline{\mathrm{c}}$ ($\mathrm{ttb} \overline{\mathrm{b}}$ / t t LF), i.e. ratio fixed to MC prediction (with uncertainties)
- Background contribution ($<5 \%$) is fixed at MC prediction (with 25% uncertainty)

Absolute cross sections

- Measure $\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{c} \bar{c}}, \sigma_{\mathrm{t} \overline{\mathrm{t} b} \overline{\mathrm{~b}}}, \sigma_{\mathrm{t} \overline{\mathrm{t} L F}}$

$$
\left.\begin{array}{rl}
f\left(\sigma_{t \bar{t} c \bar{c}}^{\mathrm{vis}}, \sigma_{t \bar{t} b \bar{b}}^{\mathrm{vis}}, \sigma_{t \bar{t} \mathrm{LF}}^{\mathrm{vis}}\right)= & \mathcal{L}^{\text {int }} \cdot\left\{\sigma_{t \bar{t} c \bar{c}}^{\mathrm{vis}} \cdot \epsilon_{t \bar{t} c \bar{c}} \cdot\left(\mathrm{H}_{t \bar{t} c \bar{c}}^{\mathrm{norm}}+\frac{N_{t \bar{t} c \mathrm{~L}}^{\mathrm{MC}}}{N_{t \bar{t} c \bar{c}}^{\mathrm{MC}} \cdot \mathrm{H}_{t \bar{t} c L}^{\mathrm{norm}}}\right)\right. \\
& +\sigma_{t \bar{t} b \bar{b}}^{\mathrm{vis}} \cdot \epsilon_{t \bar{t} b \bar{b}} \cdot\left(\mathrm{H}_{t \bar{t} b \bar{b}}^{\mathrm{norm}}+\frac{N_{t \bar{t} b \mathrm{~L}}^{\mathrm{MC}} \cdot \mathrm{H}_{t \bar{t} b L}^{\mathrm{norm}}}{N_{t \bar{t} b \bar{b}}^{\mathrm{MC}}}\right) \\
& +\sigma_{t \bar{t} \mathrm{LF}}^{\mathrm{vis}} \cdot \epsilon_{t \bar{t} \mathrm{LF}} \cdot\left(\mathrm{H}_{t \bar{t} \mathrm{tF}}^{\mathrm{norm}}+\frac{N_{t \bar{t}+\mathrm{Other}}^{\mathrm{MC}}}{N_{t \bar{t} L F}^{\mathrm{MC}}} \cdot \mathrm{H}_{t \bar{t}+\mathrm{Other}}^{\text {norm }}\right.
\end{array}\right)
$$

Ratios

- Measure $\mathrm{R}_{\mathrm{b}}={ }^{\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}}} / \sigma_{\mathrm{t} \overline{\mathrm{t} j}}$ and $\mathrm{R}_{\mathrm{c}}=\sigma_{\mathrm{tt} c \bar{c}} / \sigma_{\mathrm{t} \overline{\mathrm{t} j}}$

Results in the fiducial phase space are extrapolated to the full phase space by means of acceptance A.

Event category	$\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{t} \overline{\mathrm{t}} \mathrm{bL}$	$\mathrm{t} \overline{\mathrm{t}} \mathrm{c} \overline{\mathrm{c}}$	$\mathrm{t} \overline{\mathrm{t}} \mathrm{CL}$	$\mathrm{t} \overline{\mathrm{t} L F}$
Efficiency $\boldsymbol{\epsilon} \mathbf{(\%)}$	12.5	8.9	7.1	5.9	4.7
Acceptance $\mathcal{A} \mathbf{(\%)}$	2.9	2.5	2.0	2.0	2.3

Template fit using NN discriminator Defining the neural network

- Neural network trained with Keras (TensorFlow backend)
- 6 inputs (Standard Normalization, $\mu=0, \sigma=1$)
- 1 hidden layer with 30 neurons and ReLu activation
- 10% Dropout in hidden layer (regularization)
- 5 outputs with SoftMax activation
- Loss function = categorical cross-entropy
- Optimizer $=$ Stochastic Gradient Decent learning rate (init) $=0.001$, decay $=$ init $/\left(5^{*} n_{\text {_ }}\right.$ epoch), nesterov momentum $=0.8$
- \quad n_epoch $=100$, batch_size $=128$

CvsL add. Jets
CvsB add. Jets
Parton match NN
ΔR (add. Jets)

$\mathrm{P}(\operatorname{ttcc})$
$\mathrm{P}(\operatorname{ttcL})$
$\mathrm{P}(\operatorname{ttbb})$

