13th International Workshop on Top-Quark Physics Poster session - 16th September 2020

ttw production: A very complex process

INTRODUCTION

- $t\bar{t}W$ process: rates measured at the LHC with larger yields than reference Standard Model (SM) predictions (CERN YR4);
- background for BSM searches and rare SM processes (such as $t\bar{t}H$ and $t\bar{t}t\bar{t}$); these motivate further study of this process.
- Event selection: $t\bar{t}$ semileptonic decay and a W boson leptonic decay, being both charged leptons of the same sign. Selection •

cuts to particle level jets: $p_T(j) > 25$ GeV and $|\eta| < 2.5$ except when forward jets are defined $(2.5 < |\eta| < 4.5)$.

DISENTANGLEMENT OF HIGHER ORDER EFFECTS

Higher order effects (in QCD strong coupling constant α_s and EW

coupling constant α) are very important for $t\bar{t}W$ production and can significantly modify leading order predictions.

QCD: Quantum

Chromodynamics

EW: Electroweak

For MadGraph5_aMC@NLO MC generator: <u>scale variations</u> of μ_R and μ_F scales in the ME (comparisons with of three different functional forms); <u>multileg setups</u> $t\overline{t}W + 0,1jNLO + 2jLO$ (with FxFx) algorithm); and systematic parameter variations have been studied.

do dN_{jets} [fb]

20

Feynman Diagrams and orders in α_s and α included in this poster's MC simulations

QCD PRODUCTION WITH NLO INCLUSIVE AND MULTILEG MERGED SETUPS

Cross-section dependence with three functional forms of the μ_R and μ_F scales

• Big effect on NLOinc samples:

 $\sigma(\mu_0/4)/\sigma(\mu_0) \sim 1.4$

MC: Monte Carlo

ME: Matrix Element

PS: Parton Shower

Small effect for FxFx multileg samples

[q] (M] 1200 _ ATLAS Preliminary ATLAS, $L_{int} = 36 \text{fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}$ Phys. Rev. D 99 (2019) 072009 ල් b 1000

Comparisons between the MG5_aMC@NLO and Sherpa MC generators

- Good agreement between both generators inside unc. bands:
 - Grey: MG5_aMC@NLO 7-point scale variations in ME
 - Cyan: same scale variations propagated in a correlated way to the PS
 - Sherpa scale variations in both the ME and PS Red

[fb] 22 ATLAS Generator Level ATLAS Generator Level ATLAS Generator Level dσ dN_{iets} MG5_aMC+Py8 FxFx √s = 13 TeV √s = 13 TeV $\sqrt{s} = 13 \text{ TeV}$ — MG5_aMC+Py8 FxFx — MG5_aMC+Py8 FxFx [fb (ptj=8 GeV) pp→tīW pp→tŧW pp→tīW Sherpa 2.2.8 Sherpa 2.2.8 dp dp ----- μ_{_}= 30 GeV MEPS@NLO MEPS@NLO --- μ_Q = 20 GeV

MG5_aMC@NLO FxFx samples

- Nominal: $\mu_Q = 30$ GeV, ptj = 8 GeV
- Merging scale (μ_0) variations:
- No significant shape effects
- Cross-section difference of $\sim 2\%$
- No effect for min. jet p_T (ptj) variations

"tree-level EW" PRODUCTION

Cross-section dependence with two functional forms of the μ_R and μ_F scales

• Low values of these scales + EW contribution give

better cross-section agreement with data

Effect of the "tree-level EW" contribution for MG5_aMC@NLO for some kinematic variable distributions

• $\sim 20\%$ effect for events in high central and forward jet multiplicity and in high pseudo rapidity region (2.5 <

 $|\eta| < 4.5$) where the extra jet in $tW \rightarrow tW$ scattering is expected

• MG5_aMC@NLO predicts a \sim 10% cross-section increase while Sherpa predicts a \sim 5%

CONCLUSIONS

- \sim 11% increase in cross-section using NLO multileg compared to NLO inclusive
- Good agreement among multileg setups and small syst. parameter effects

EW corrections boost $t\bar{t}W$ cross-section by ~10% and have significant

effects in some kinematic distributions

