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• Anomaly cancellation in the SM
• U(1) gauge theory warm-up
• su(3)⊕ su(2)⊕ u(1)⊕ u(1)
• Neutral current B−anomalies
• Third Family Hypercharge Model
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Quantum Field Theory
Anomalies in the SM

A ≡
∑
LH fi

Y 3
i −

∑
RH fi

Y 3
i

Also, replace two B fields by gravitons, gluons or SU(2)

W bosons. From now on, write all fields as left-handed.
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Y 3 : 0 =
3∑
j=1

(
6Q3

j + 3U 3
j + 3D3

j + 2L3
j + E3

j

)
,

32Y : 0 =

3∑
j=1

(2Qj + Uj +Dj) ,

22Y : 0 =
3∑
j=1

(3Qj + Lj) ,

grav2Y : 0 =

3∑
j=1

(6Qj + 3Uj + 3Dj + 2Lj + Ej) .

Note that there’s no ‘take one family’
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Hypercharge anomaly
cancellation

Deforming the SM to SU(3)×SU(2)×RY , and allowing

the hypercharges Y of the chiral fermionic fields to float,

the combination of gauge ACC and gravitational ACC

implies that the hypercharges must be quantised1 (i.e.

that ratios of hypercharges of different chiral fermions

are commensurate). Conversely, if the hypercharges are

quantised but otherwise free, the gauge ACC implies the

gravitational ACC 2.
1Weinberg, The Quantum Theory of Fields (1995), Cambridge University Press
2Lohitsiri and Tong, arXiv:1907.00514
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A Warm Up: U(1)

Pioneering solution to ACCs: Costa, Dobrescu, Fox,

arxiv:1905.13729. n chiral fermions with charges zi:

z3
1 + . . .+ z3

n = 0,

z1 + . . .+ zn = 0. (1)

Given 2 solutions x, y, construct a third by “merger”

{x} ⊕ {y} :=

(
n∑
i=1

xiy
2
i

)
{x} −

(
n∑
i=1

x2
iyi

)
{y}.

Want to find suitably general solutions x, y.
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Example: even n

{x} = {l1, k1, . . . , km,−l1,−k1, . . . ,−km}
{y} = {0, 0, l1, . . . , lm,−l1, . . . ,−lm},
m = n/2− 1 ≥ 2, 1 ≤ i ≤ m

{x} and {y} are each vector-like solutions but it turns out

that {x} ⊕ {y} is a new chiral solution.

{x}⊕{y} parameterises all solutions up to permutations.

There is a similar story for odd n.
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Geometric Understanding

In BCA, Gripaios, Tooby-Smith, arXiv:1912.04804,

we provide a geometric understanding of this. First, note

that each solution in Q is equivalent to one in Z by clearing

denominators. Using gravitational anomaly cancellation,

eliminate zn to obtain the homogeneous cubic

n−1∑
i=1

z3
i −

(
n−1∑
i=1

zi

)3

= 0

defining a cubic hypersurface in Qn−1.
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Special Surface

In fact, our cubic hypersurface is rather special: no

purely cubic terms in any one variable: (add perms)

n = 3: z = [−a : 0 : a], ie three lines z3 = −z1, z2 = 0

n = 4: z = [−x : −y : x : y], x, y ∈ Q ie three planes
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n > 4: The Method of Chords3

Rational cubic c(z1, z2, z3) = 0. Put a line through 2

known intersections a, b: L(t) = a+ t(b− a). Along line,

c(L(t)) = kt(t− 1)(t− t0), where k, t0 ∈ Q.

3Newton, Fermat, C17th
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Mordell’s Theorem4

Skew Γ1, Γ2 in c = 0 ⇒all rational points on c can be

found this way.

4Mordell (1969) Diophantine Equations
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Projective space

All solutions where zi differ by a common multiple are

physically equivalent so it’s in PQn−2:

zi

zj
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In PQn−2

Because Q is a field, geometry works in PQn−2, as does

the Method of Chords and Mordell’s Theorem. We extend

Mordell’s theorem to an arbitrary cubic hypersurface X in

PQn−2: Γ1,Γ2 are disjoint planes of dimensions (n− 3)/2

(if n is odd). Every p ∈ X lies on a chord joining a point

in Γ1 to one in Γ2.

The merger is exactly this construction. The initial

vector-like solutions parameterise Γ1, Γ2.
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Rank++

Extend SM Lie algebra to su(3)⊕su(2)⊕u(1)⊕u(1): our
analysis will cover extensions for which this is a subgroup
eg non-abelian extensions.
Motivations include unification, models of dark matter,
(g− 2)µ, axions, fermion mass hierarchies, Z ′ explanations
for apparent disagreements with SM predictions in
measurements of B−meson decays.
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32X : 0 =

3∑
j=1

(2Qj + Uj +Dj) ,

22X : 0 =

3∑
j=1

(3Qj + Lj) ,

Y 2X : 0 =

3∑
j=1

(Qj + 8Uj + 2Dj + 3Lj + 6Ej) ,

Y X2 : 0 =

3∑
j=1

(
Q2
j − 2U2

j +D2
j − L2

j + E2
j

)
,

grav2X : J :=
n∑
i=1

xi = −
3∑
j=1

(6Qj + 3Uj + 3Dj + 2Lj + Ej),

X3 : M + J3 :=

n∑
i=1

x3i = −
3∑
j=1

(
6Q3

j + 3U3
j + 3D3

j + 2L3
j + E3

j

)
.
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1. Find solutions for SM fermions charges from first 4

2. Apply GL(3,Z) transformation to species F :

F+ := F1 + F2 + F3, Fα := F1 − F2, Fβ := F2 + F3.

3. Linear equations become

D+ = −2Q+ − U+, L+ = −3Q+, E+ = 2Q+ − U+.

4. Quadratic is a solveable homogeneous diophantine

equation of degree 2 in the 12-tuple

X := (Q+, U+, Qα, Qβ, Uα, Uβ, Dα, Dβ, Lα, Lβ, Eα, Eβ).
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XTHX = 0 defines hypersurface Γ ∈ PQ11.

H =



0 0 −2 −4 0 0 4 8 −6 0 −4 −8

0 0 0 4 8 2 4 0 0 2 4

2 3 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

−4 6 0 0 0 0 0 0

−12 0 0 0 0 0 0

2 3 0 0 0 0

6 0 0 0 0

−2 3 0 0

6 0 0

2 3

6



.
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Quadratic

XTHX = 0

Consider lines L = αX̃ + βR through a known solution

X̃ ∈ PQ11, where R ∈ PQ11, and [α : β] ∈ PQ1: (eg X̃

has all zero except Qα = Lα = 1)

β(2RTHX̃α+RTHRβ) = 0.

Using same trick as before

X = (RTHR)X̃ − 2(RTHX̃)R.
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Solution In Detail

Qα = 2RQαΛ + Σ, Lα = 2RLαΛ + Σ,

where Σ = RTHR and

Λ = (8RQ+
+ 2RLα + 3RLβ − 2RQα − 3RQβ).

All other charges X are 2RXΛ, where RX ∈ Z.

R := {RQ+, RU+, RQα, RQβ, RUα, RUβ, RDα, RDβ,

RLα, RLβ, REα, REβ}.

Then, invert the GL(3,Z).
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SM Singlets

Adding n SM singlets with U(1) charges decouples the

last two equations. Results:

• We can always find a full solution for n ≥ 5, eg:

(M/6 ∈ Z) {M/6 + 1, M/6− 1, −M/6, −M/6, J}
• For lower n, we give restrictions on M , J for when a

solution exists.

However, annoyingly, we only have a partial solution for

the full 6 equations together.
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Summary of Solutions

For n = 0, we begin with 15 SM charges and 4 anomaly

equations reduce these to an 11-dimensional quadratic

surface of solutions, extending out to infinity, but becoming

more sparse further from the origin.

To find solutions for fixed n ≤ 3 and charges between

-10 and 10, we did a numerical scan: BCA, Davighi,

Melville, arXiv:1812.04602.

An Anomaly-Free Atlas is available for public use:

http://doi.org/10.5281/zenodo.1478085
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Solutions: n = 0
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eg: Qmax = 1. Charges within a species are listed in

increasing order.
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Known Solutions
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Caveat?

Anomalies can be cancelled by a Wess-Zumino term, a

higher dimension L operator of topological origin. These

can eg be obtained by integrating out heavy states:

relevant for singlets.

Generic ones are hard to generate whilst making the

relevant heavy states heavy from U(1) spontaneous

breakdown.
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Other Constraints

Consider perturbativity:

d ln g

d lnµ
=
g2
∑

i∈χ∪V X
2
i

24π2
< 1

⇔ g <
2π
√

6√∑
i∈χ∪V X

2
i

.

Growing evidence that weakest force in a consistent theory

must be gravity. Take field of mass largest Q/m ratio,

WGC ⇒
g >

m

QMP
.
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Strange b Activity
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R
(∗)
K in Standard Model

RK =
BR(B → Kµ+µ−)

BR(B → Ke+e−)
, RK∗ =

BR(B → K∗µ+µ−)

BR(B → K∗e+e−)
.

These are rare decays (each BR∼ O(10−7)) because they

are absent at tree level in SM.
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LHCb B0→ K0∗e+e− Event5

5Picture from CERN Courier April 2018
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RK(∗)
LHCb results: q2 = m2

ll.
q2/GeV2 SM LHCb 3 fb−1 σ

RK [1, 6] 1.00± 0.01 0.846± 0.06 2.5

RK∗ [0.045, 1.1] 0.91± 0.03 0.66+0.11
−0.07 2.2

RK∗ [1.1, 6] 1.00± 0.01 0.69+0.11
−0.07 2.5
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Bs→ µ+µ−

Lattice QCD provides important input to6

BR(Bs→ µµ)SM = (3.65± 0.23)× 10−9,

BR(Bs→ µµ)

BR(Bs→ µµ)SM
=

∣∣∣∣ (c̄µLL + c̄µRR − c̄µLR − c̄µRL)tot

(c̄µLL + c̄µRR − c̄µLR − c̄µRL)SM

∣∣∣∣2 .

6Bobeth et al, 1311.0903
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B0→ K∗0(→ K+π−)µ+µ−
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P ′5

P ′5 = S5/
√
FL(1− FL), leading form factor uncertainties

cancel 2003.04831
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Hadronic Uncertainties
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Wilson Coefficients c̄lij
In SM, can form an EFT since mB �MW :

Ol
ij = (s̄γµPib)(l̄γµPjl) .

Leff ⊃
∑
l=e,µ,τ

∑
i=L,R

∑
j=L,R

clij
Λ2
l,ij

Ol
ij ,

=
∑
l=e,µ,τ

VtbV
∗
ts

α

4πv2

(
c̄lLLOl

LL + c̄lLROl
LR

+c̄lRLOl
RL + c̄lRROl

RR

)
⇒ c̄lij = (36 TeV/Λ)2clij.

clij ∼ ±O(1) all predicted by weak interactions in SM.

35



Which Ones Work?

Options for a single BSM operator:

• c̄eij operators fine for RK(∗) but are disfavoured by global

fits including other observables.
• c̄µLR disfavoured: predicts enhancement in both RK and

RK∗

• c̄µRR, c̄µRL disfavoured: they pull RK and RK∗ in opposite

directions.
• c̄µLL = −1.06 fits well globally7.

7D’Amico et al, 1704.05438; Aebischer et al 1903.10434.
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Statistics8

c̄µLL
√
χ2
SM − χ2

best

clean −1.33± 0.34 4.1

dirty −1.33± 0.32 4.6

all −1.06± 0.16 6.5

Cµ
9 = (c̄µLL + c̄µLR)/2

√
χ2
SM − χ2

best

clean −1.51± 0.46 3.9

dirty −1.15± 0.17 5.5

all −0.95± 0.15 5.8
8‘clean’ (RK, RK∗, Bs → µµ) and ‘dirty’ (P ′5, B → φµµ+100 others).

D’Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 1704.05438;
Aebischer, Altmanshoffer, Guadagnoli, Reboud, Stangl, Straub, 1903.10434. SM
p−value around 3σ for NCBAs.
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Simplified Models for cµLL
At tree-level, we have:
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Bs− B̄s Mixing

Z ′
s

b̄

s̄

b

ḡsbL
<∼ MZ′

194 TeV
from QCD sum rules and lattice9

9King, Lenz, Rauh, arXiv:1904.00940
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Z ′→ µµ ATLAS 13 TeV 139
fb−1

ATLAS analysis: look for two track-based isolated µ,

pT > 30 GeV. One reconstructed primary vertex. Keep

only highest scalar sum pT pair10

m2
µ1µ2

= (pµ1 + pµ2)
(
p1µ + p2µ

)
CMS also have released11 a similar 36 fb−1 analysis.

101903.06248
111803.06292
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ATLAS l+l− limits

1903.06248
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During the 1990s

We wanted to be the Grand Architects, searching for

the string model to rule them all
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During the 2010s

We are happy with any beyond the Standard Model

roof
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A Model
BCA, Davighi, arXiv:1809.01158: Add complex SM

singlet scalar θ and gauged U(1)F :

SU(3)× SU(2)L × U(1)Y × U(1)F
〈θ〉 ∼Several TeV

SU(3)× SU(2)L × U(1)Y
〈H〉 ∼246 GeV

SU(3)× U(1)em

• SM fermion content
• anomaly cancellation
• 0 F charges for first two generations
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The Flavour Problem
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The Flavour Problem
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Unique Solution

FQ′i = 0 FuR′i = 0 FdR′i = 0 FL′i = 0

FeR′i = 0 FH = −1/2 FQ′3 = 1/6 Fu′R3
= 2/3

Fd′R3
= −1/3 FL′3 = −1/2 Fe′R3

= −1 Fθ 6= 0

L = YtQ3
′
LHt

′
R + YbQ′3LH

cb′R + YτL3
′
LH

cτ ′R +H.c.,
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Yukawa Advantages

• First two families massless at renormalisable level
• Their masses and fermion mixings generated by small

non-renormalisable operators

This explains the hierarchical heaviness of the third family

and small CKM angles
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Z −X mixing

Because FH = −1/2, Z −X mix:

M2
N =

v2

4

 g′2 −gg′ g′gF
−gg′ g2 −ggF
g′gF −ggF g2

F(1 + 4F 2
θ r

2)

 −Bµ

−W 3
µ

−Xµ

• v ≈ 246 GeV is SM Higgs VEV
• gF = U(1)F gauge coupling
• r ≡ vF/v � 1, where vF = 〈θ〉
• Fθ is F charge of θ field
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Z −X mixing angle

sinαz ≈
gF√
g2 + g′2

(
MZ

M ′
Z

)2

� 1.

This gives small non-flavour universal couplings to the Z

boson propotional to gF and:

Zµ = cosαz
(
− sin θwBµ + cos θwW

3
µ

)
+ sinαzXµ,
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LXψ = gF

(
1

6
uLΛ(uL)γρuL +

1

6
dLΛ(dL)γρdL−

1

2
nLΛ(nL)γρnL −

1

2
eLΛ(eL)γρeL+

2

3
uRΛ(uR)γρuR−

1

3
dRΛ(dR)γρdR − eRΛ(eR)γρeR

)
Z ′ρ,

Λ(I) ≡ V †I ξVI, ξ =

 0 0 0

0 0 0

0 0 1


Z ′ couplings, I ∈ {uL, dL, eL, νL, uR, dR, eR}
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A simple limiting case

VuR = VdR = VeR = 1

for simplicity and the ease of passing bounds.

VdL =

 1 0 0

0 cos θsb − sin θsb
0 sin θsb cos θsb

 , VeL =

 1 0 0

0 0 1

0 1 0

 ,

⇒ VuL = VdLV
†
CKM and VνL = VeLU

†
PMNS.
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Important Z ′ Couplings

gF

1

6
dL

 0 0 0

0 sin2 θsb
1
2 sin 2θsb

0 1
2 sin 2θsb cos2 θsb

 /Z
′

 dL
sL
bL

+

−1

2
eL

 0 0 0

0 1 0

0 0 0

 /Z
′

 eL
µL
τL




Put |θsb| ∼ O(|Vts|) = 0.04, so |gµµ| � |gbs|, which helps

us survive Bs −Bs constraint.

cLL = g2
F sin 2θsb/(24M 2

Z′).
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gF ∝MZ ′/
√

sin 2θbs
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Example Case Predictions

Mode BR Mode BR Mode BR

tt̄ 0.42 bb̄ 0.12 νν̄ ′ 0.08

µ+µ− 0.08 τ+τ− 0.30 other fifj ∼ O(10−4)

LEP LFU

g2
F

(
MZ

MZ′

)2

≤ 0.004⇒ gF ≤
MZ′

1.3 TeV
.

It’s worth chasing BR(B → K(∗)τ±τ∓).
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Conclusion

We have a partial solution to the full set of anomaly

equations for SM rank extensions.

The answers to the questions raised by the

neutral current B−anomalies may provide a direct

experimental probe into the flavour problem.
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Backup
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RK(∗) pre Moriond 2019
LHCb results from 7 and 8 TeV: q2 = m2

ll.
q2/GeV2 SM LHCb 3 fb−1 σ

RK [1, 6] 1.00± 0.01 0.745+0.090
−0.074 2.6

RK∗ [0.045, 1.1] 0.91± 0.03 0.66+0.11
−0.07 2.2

RK∗ [1.1, 6] 1.00± 0.01 0.69+0.11
−0.07 2.5
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Deformed TFHM

FQ′i = 0 FuR′i = 0 FdR′i = 0 FH = −1/2

FeR′1 = 0 FeR′2 = 2/3 FeR′3 = −5/3

FL′1 = 0 FL′2 = 5/6 FL′3 = −4/3

FQ′3 = 1/6 Fu′R3
= 2/3 Fd′R3

= −1/3 Fθ 6= 0

L = YtQ3
′
LHt

′
R + YbQ′3LH

cb′R +H.c.,
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Invisible Width of Z Boson

Γ
(exp)
inv = 499.0±1.5 MeV, whereas Γ

(SM)
inv = 501.44 MeV.

⇒ ∆Γ(exp) = Γ
(exp)
inv − Γ

(SM)
inv = −2.5± 1.5 MeV.

Lν̄νZ = − g

2 cos θw
ν ′Le/ZPLν

′
Le

−ν ′Lµ
(

g

2 cos θw
+

5

6
gF sinαz

)
/Zν ′Lµ

−ν ′Lτ
(

g

2 cos θw
− 8

6
gF sinαz

)
/Zν ′Lτ .

63



RD(∗) = BR(B−→ D(∗)τν)/BR(B−→ D(∗)µν)
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RD(∗): BSM Explanation

. . . has to compete with

Leff = − 2

Λ2
(c̄Lγ

µbL) (τ̄LγµντL) +H.c.

Λ = 3.4 TeV

A factor 10 lower than required for RK(∗) ⇒ different

explanation?

PMP⇒we ignore RD(∗).
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Other conclusions

• The answers to the questions raise by RK(∗) may provide

a direct experimental probe into the flavour problem.
• Focused on tree-level explanations of RK(∗) as they are

usually harder to discover: Z ′ and leptoquarks.
• News on R

(∗)
K expected in 2019. At the current central

value, Belle II can reach 5σ by mid 2021. LHCb’s RK∗

would be close to12 5σ by 2020.
• RK(∗) ⇒ HL-LHC, HE-LHC and FCC-hh

12Albrecht et al, 1709.10308
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SM + 3 νR: number of solutions etc
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13 TeV ATLAS 3.2 fb−1 µµ
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Neutrino Masses

At dimension 5:

LSS =
1

2M
(L′3

T
Hc)(L′3H

c),

but if we add RH neutrinos, then integrate them out

LSS = 1/2
∑
ij

(L′iH
c)(M−1)ij(L

′
jH

c),

where now (M−1)ij may well have a non-trivial structure.

If (M−1)ij are of same order, large PMNS mixing results.
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Froggatt Neilsen Mechanism13

A means of generating the non-renormalisable Yukawa

terms, e.g. Fθ = 1/6:

YcQ′L
(F=0)
2 H (F=−1/2)c′R

(F=0) ∼ O
[(〈θ〉

M

)3

Q′L2Hc
′
R

]

〈θ∗〉 〈θ∗〉 〈θ∗〉〈H0(F=−1/2)〉

Q
′(+1/6)
L Q

′(+2/6)
L Q

′(+3/6)
L

Q
′(0)
L2

c
′(0)
R2M M M

eg
(
〈θ〉
M

)
∼ 0.2

⇒ Yc/Yt ∼ 1/100

13C Froggatt and H Neilsen, NPB147 (1979) 277
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LQ Models

Scalar14 S3 = (3̄, 3, 1/3) of SU(2)×SU(2)L×U(1)Y :

L = . . .+ y3bµQ3L2S3 + y3sµQ2L2S3 + yqQQS
†
3 + h.c.

Vector V1 = (3̄, 1, 2/3) or V3 = (3, 3, 2/3)

L = . . .+ y′3V
µ

3 Q̄γµL+ y1V
µ

1 Q̄γµL+ y′1V
µ

1 d̄γµl + h.c.

⇒ c̄µLL = κ
4πv2

αEMVtbV ∗ts

y∗3bµy3sµ

M 2
.

κ = 1,−1,−1 and y = y3, y1, y
′
3 for S3, V1, V3.

14Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D’Amico et al
1704.05438.
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CMS 8 TeV 20fb−1 2nd gen
CMS-PAS-EXO-12-042: M > 1.07 TeV.
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Other Constraints On LQs
Note that the extrapolation is very rough for pair

production. Fix M = 2MLQ, assuming they are produced

close to threshold: ∆ = 0.1. Bs − B̄s

mixing is at one-loop:

Lb̄sb̄s = k
|ybµy∗sµ|2

32π2M 2
LQ

(
b̄γµPLs

)
(s̄γµPLb) + h.c.

y = y3, y1, y
′
3 and k = 5, 4, 20 for S3, V1, V3.

Data ⇒ cbbLL < 1/(210TeV)2.
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Mass Constraints: Summary

S3 41 TeV

V1 41 TeV

V3 18 TeV

Upper mass limits for leptoquarks that satisfy neutral

current B−anomaly fits and Bs−mixing constraints.
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8 TeV CMS 20fb−1 2nd gen
LQ

Up to 14 TeV LQs with 100 TeV 10 ab−1 FCC-hh. MLQ < 41 TeV.
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LQ Mass Limits

S3 41 TeV

V1 41 TeV

V3 18 TeV

From Bs − B̄s mixing and fitting b−anomalies.

Pair production has a reach up to 12 TeV.

The pair production cross-section is insensitive to the

representation of SU(2) in this case.
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HL-LHC/HE-LHC LQs
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Other Flavour Models

Realising15 the vector LQ solution based on PS =

[SU(4) × SU(2)L × SU(2)R]3. SM-like Higgs lies in

third generation PS group, explaining large Yukawas

(others come from VEV hierarchies). Get U(2)Q × U(2)L
approximate global flavour symmetry.

15Di Luzio Greljo, Nardecchia arXiv:1708.08450, Bordone, Cornella, Fuentes-
Martin, Isidori, arXiv:1712.01368
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Single Production of LQ

Depends upon LQ coupling as well as LQ mass

Current bound by CMS from 8 TeV 20 fb−1: MLQ > 660

GeV for sµ coupling of 1. We include b as well from

NNPDF2.3LO (αs(MZ) = 0.119), re-summing large logs

from initial state b. Integrate σ̂ with LHAPDF.
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σs for S3 with ysµ = ybµ = y.
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Single LQ Production σ

σ̂(qg → φl) =
y2αS
96ŝ

(
1 + 6r − 7r2 + 4r(r + 1) ln r

)
,

where16 r = M 2
LQ/ŝ and we set ysµ = ybµ = y.

16Hewett and Pakvasa, PRD 57 (1988) 3165.
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LHC Upgrades

High Luminosity (HL) LHC: go to 3000 fb−1 (3 ab−1).

High Energy (HE) LHC: Put FCC magnets (16 Tesla rather

than 8.33 Tesla) into LHC ring: roughly twice collision

energy: 27 TeV.
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Properties of anomaly-free
solutions

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

lo
g

1
0
(#

 s
o
lu

ti
o
n
s)

Qmax

SMνR
SM

-12
-11
-10

-9
-8
-7
-6
-5
-4
-3
-2

 1  2  3  4  5  6  7  8  9  10

lo
g

1
0
(f

ra
ct

io
n
)

Qmax

93


