

Dark Matter via the Neutrino Portal

Overview

Dark Matter Production

Experimental Constraints

Neutrino Portal

Consistency Condition of the Neutrino Portal to Dark Matter

Dark Matter Production [Hambye et. al (2019)]

Boltzmann Equations

Boltzmann-Equations

$$\frac{dY}{dt} \sim -\frac{\Gamma}{H} \left(\prod_{i \in I} \frac{Y_i}{Y_i^{\text{eq}}} - \prod_{f \in F} \frac{Y_f}{Y_f^{\text{eq}}} \right)$$

Process Efficiency? \rightarrow Compare Γ to $H \sim T^2 M_{\rm Pl}^{-1}$

 \rightarrow If $\Gamma \ll H$ process decouples; If $\Gamma \gg H$ process is in equilibrium

Mathias Becker

Dark Matter Production - Freeze-Out

Dark Matter Production - Freeze-Out

- DM density decreases with an increasing coupling
- $\square \Omega_{DM} \sim <\sigma v >^{-1}$
- Typically bounds DM mass from above

Dark Matter Production - Freeze-Out

Dark Matter Production - Freeze-In [Hall et. al(2009)]

Dark Matter Production – Freeze-In [Hall et. al(2009)]

Dark Matter Production - Freeze-In

Dark Matter Production – Dark Freeze-Out

Dark Matter Production – Dark Freeze-Out

- Energy transfer into the dark sector (DS) stops before the DS self-interactions decouple.
- A larger SM-DS coupling increases Ω_{DM}
- A larger DS self-interaction decreases Ω_{DM}.

Dark Matter Production – Reannihilation

Dark Matter Production – Reannihilation $Y = \frac{n}{s}$ Mediator — Y_{DM} **Y**_{Mediator} Y_{FI} SM DM $Z = \frac{m}{T}$ Reannihilation Mediator Energy transfer into the dark sector (DS) stops before the DS self-interactions decouple. A larger SM-DS coupling SM DM increases Ω_{DM}

 A larger DS self-interaction decreases Ω_{DM}.

Dark Matter Production – Reannihilation

Experimental Constraints

Direct Detection

[1903.03026]

- Search for DM scattering with nucleons on earth.
 - Looses sensitivity for $M_{DM} \lesssim 10 \, {
 m GeV}.$
 - Constrains the DM-SM coupling.
 - Light Mediators: Even Freeze-In can be tested [Hambye et. al (2018)]

Collider Constraints

- Requires a sizeable SM-DM or SM-Mediator coupling.
- Large SM-DM : DM production and its signatures, e.g. missing energy.
- Large SM-Mediator can test feeble SM-DM interaction via long-lived particle searches.

LHC friendly Freeze-In [Belanger et al (2018)]

- Lines indicate correct relic density
- Hadronic model: $m_F \ge 1.5 \,\mathrm{TeV}$
- A measurement of the leptonic model might rule out certain leptogenesis scenarios

Collider Constraints and Self-Interactions

- DM self-interaction is constrained to $\frac{\sigma_{DM}}{M_{DM}} \lesssim 1 \frac{cm^2}{g}$ from Bullet Cluster.
- Astrophysical constraints (BBN,CMB,Lyman-α) constrain small DM masses.

Portals to Dark Matter

Higgs Portal

 $\left(\phi^{\dagger}\phi
ight)\eta^{2}$

[Arcadi,Djouadi,Raidal (2019)]

Vector Portal

$$B^{\mu
u}B^{\prime}_{\mu
u}$$

[Hambye et. al (2019)]

Neutrino Portal

 $\bar{L}\phi N$

Portals to Dark Matter

Higgs Portal

Vector Portal

 $\left(\phi^{\dagger}\phi
ight)\eta^{2}$ [Arcadi,Djouadi,Raidal (2019)] $B^{\mu
u}B^{\prime}_{\mu
u}$ [Hambye et. al (2019)] Neutrino Portal

 $\bar{L}\phi N$

- N itself can be a DM candidate
 - ightarrow simplest scenario tightly constrained from Lyman-lpha and ${\it N}
 ightarrow
 u\gamma$

The Neutrino Portal to Dark Matter

Dark sector: Fermion χ and scalar η , stabilized by U(1) or \mathcal{Z}_2 .

Lagrangian (Type-I Seesaw)

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin,DS}} - V_{\text{sc.}} - \left(\bar{N} \left[(y_{\nu} \tilde{\phi} L + y_{\chi} \eta \chi_L \right] + h.c. \right)$$

The Neutrino Portal to Dark Matter

Dark sector: Fermion χ and scalar η , stabilized by U(1) or \mathcal{Z}_2 .

Lagrangian (Type-I Seesaw)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin,DS} - V_{sc.} - \left(\bar{N} \left[(y_{\nu} \tilde{\phi} L + y_{\chi} \eta \chi_L \right] + h.c. \right)$$

Type-I seesaw	Inverse seesaw	Type-I seesaw
Freeze-Out	Freeze-Out	Freeze-In
[Escudero,Rius,Sanz (2016)]	[Batell et. al (2017)]	[MB (2018)]
[Escudero,Rius,Sanz (2016)]	[Batell,Han,Es Haghi (2017)]	[Chianese,King (2018)]
	[González Macıas et. al (2016)]	

The Neutrino Portal to Dark Matter

Dark sector: Fermion χ and scalar η , stabilized by U(1) or \mathcal{Z}_2 .

Lagrangian (Type-I Seesaw)

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin,DS}} - V_{\text{sc.}} - \left(\bar{N}_{R} \left[(y_{\nu} \tilde{\phi} L + y_{\chi} \eta \chi_{L} \right] + h.c. \right)$$

Type-I seesaw	Inverse seesaw	Type-I seesaw
Freeze-Out	Freeze-Out	Freeze-In
[Escudero,Rius,Sanz (2016)]	[Batell et. al (2017)]	[MB (2018)]
[Escudero,Rius,Sanz (2016)]	[Batell,Han,Es Haghi (2017)]	[Chianese,King (2018)]
	[González Macıas et. al (2016)]	

Freeze-In, based on IMB.2018] SM Particle Scattering $\sigma \sim y_{\nu}^{2}y_{\chi}^{2}$ Heavy Neutrino Scattering $\sigma \sim y_{\chi}^{4}$

Analytic Approximation with $M_N \ll m_{\chi}$ (non-resonant)

$$Y_\chi \sim rac{M_{\mathsf{Pl}}}{m_\chi} \left(6 y_
u^2 y_\chi^2 + 35 y_\chi^4
ight)$$

Results I

Same suppression mechanism for y_{χ} and y_{ν} can lead to $y_{\chi} \sim y_{\nu}$, e.g. extra dimensional model. [MB,Pas 2017],[Bhattacharyya et. al 2002]

• Heavy neutrino scattering suppressed for $m_{\chi} \gtrsim 10^3 M_N$.

• Lower Bound:
$$m_{\chi} \gtrsim \left(\frac{y_{\nu}}{y_{\chi}}\right)^{\frac{4}{3}} \, \mathrm{MeV}$$

Constraints

- Non-resonant case hard to constrain.
- Resonant case is mainly constrained from the Lyman- α measurement.

 $y_\chi\gtrsim y_
u$: Freeze-Out

Thermal DM spectrum

$$z_{\text{prod}} = z (T = T_{\text{Freeze-Out}})$$

- $m_{\rm DM}\gtrsim 10\,{
 m keV}$
- \rightarrow This case is *ruled out*.

- $y_{\chi} \ll y_{\nu}$: Freeze-In
- Non-thermal DM spectrum
- $z_{\text{prod}} \approx z (T = M_N)$
- $\,$ $m_{\rm DM}\gtrsim 3\,{
 m keV}$
- \rightarrow This case is *constrained*.

Consistency Conditions, ongoing work with C. Hormigos-Feliu

Scalar Potential

$$\mathcal{L} \supset -m_{\eta}^{2}\eta^{\dagger}\eta - rac{\lambda_{2}}{2}\left(\eta^{\dagger}\eta
ight)^{2} - \lambda_{3}\left(\phi^{\dagger}\phi
ight)\left(\eta^{\dagger}\eta
ight) - \mathcal{Y}_{\chi}ar{\chi}
u_{R}\eta$$

Consistency Conditions

$$0\leq\lambda_{2}\leq2\left(4\pi
ight)^{2}$$
; $0\leq\lambda_{1}\leq2\left(4\pi
ight)^{2}$; $-\sqrt{\lambda_{1}\lambda_{2}}\leq\lambda_{3}\leq\left(4\pi
ight)^{2}$

Strategy :

- Randomly generate data points that fit DM phenomenology (Ω_{DM}, DD, Colliders).
- Take these values at the DM mass sclae µDM and run them up to higher sclaes.
- Determine scale Λ_{max} , where the model becomes inconsistent.

Mathias Becker

RGEs

RGEs

$$\begin{split} \beta_{\lambda_2} &\sim 10\lambda_2^2 + 4\lambda_3^2 {-} 36y_\chi^4 + 12\lambda_2 y_\chi^2 \,, \\ \beta_{y_\chi} &\sim y_\nu^2 y_\chi + y_\chi^3 \end{split}$$

RGEs

Type I Seesaw:
$$y_{\nu} \sim 10^{-7} \sqrt{M_N [{
m GeV}]}$$

RGEs

$$\begin{split} \beta_{\lambda_2} &\sim 10\lambda_2^2 + 4\chi_3^2 - 36y_\chi^4 + 12\lambda_2 y_\chi^2 \,, \\ \beta_{y_\chi} &\sim y_\nu^2 y_\chi + y_\chi^3 \end{split}$$

RGEs

Type I Seesaw:
$$y_{
u} \sim 10^{-7} \sqrt{M_N [{
m GeV}]}$$

RGEs

$$\begin{split} \beta_{\lambda_2} &\sim 10\lambda_2^2 + 4\chi_3^2 - 36y_\chi^4 + 12\lambda_2 y_\chi^2 \,, \\ \beta_{y_\chi} &\sim y_\nu^2 y_\chi + y_\chi^3 \end{split}$$

Analytic Estimate

$$egin{split} y_{\chi}\left(\mu_{\mathit{DM}}
ight) \leq \sqrt{rac{16+\sqrt{31}}{3\left(1+\sqrt{31}
ight)}}rac{4\pi}{\sqrt{1+\log\left(rac{\mathit{M}_{\mathsf{Pl}}}{\mu_{\mathit{DM}}}
ight)}} \end{split}$$

Numerical Study I

RGEs

$$\beta_{\lambda_2} \sim 10\lambda_2^2 - 36y_{\chi}^4 + 12\lambda_2 y_{\chi}^2,$$

Mathias Becker

Numerical Study I

RGEs

$$\beta_{\lambda_2} \sim 10\lambda_2^2 - 36y_{\chi}^4 + 12\lambda_2 y_{\chi}^2 \,,$$

Mathias Becker

Freeze-Out Contributions

Neutrino Portal Contributions $\sigma \sim y_{\chi}^4$ Higgs Portal Contributions $\sigma \sim \lambda_3^2$

Numerical Study II

Mathias Becker

Numerical Study III

Mathias Becker

Numerical Study III

Mathias Becker

Conclusions

- Successful DM production is possible in a very large coupling range.
- The neutrino portal relies on Yukawa interactions to produce DM → Potentially unstable vacuum
- Consistency conditions might constrain the *DM* mass in the neutrino portal to $m_{DM} \lesssim \text{TeV}$ and improve limits on the mediator-DM coupling (y_{χ}) significantly.
- Small SM-mediator interaction (y_v) in the type-I seesaw motivates Freeze-In scenarios, which, in the non-resonant scenario, remain unconstrained.

Freeze-In Parametrics

Dark Matter production stops at $T_{\text{FI}} \approx M_{\text{MAX}}$.

Freeze-In Parametrics

Dark Matter production stops at $T_{\text{FI}} \approx M_{\text{MAX}}$.

DM

DM

Freeze-In Parametrics

Dark Matter production stops at $T_{\text{FI}} \approx M_{\text{MAX}}$.

■ $M_{MAX} = m_{Mediator}$ ■ $T < m_{Mediator} \rightarrow \text{Resonance is not}$ accessible SM

Freeze-In Parametrics

- **Dark Matter production stops at** $T_{\text{FI}} \approx M_{\text{MAX}}$.
- Production Time: $t = H^{-1}(T_{\text{FI}}) \sim T_{\text{FI}}^{-2} M_{\text{pI}} = M_{\text{MAX}}^{-2} M_{\text{pI}}$.
- Production Rate: $\Gamma(T_{FI}) \sim T_{FI}^{x} M_{MAX}^{-x+1} = M_{MAX}$.

Freeze-In Yield

$$Y \sim arGamma t ert_{ extsf{FI}} \sim rac{M_{ extsf{PI}}}{M_{ extsf{MAX}}}$$

3 Generation Setup

Casas-Ibarra Parametrization (heavy Neutrinos mass-degenerate)

$$Y_{\nu} = \underbrace{\frac{\sqrt{M_{N}\Delta m_{\nu}}}{v}}_{\equiv y_{\nu}} \underbrace{R \frac{1}{\sqrt{\Delta m_{\nu}}} \sqrt{m_{\nu}}}_{\equiv R'} U_{\text{PMNS}}^{\dagger},$$

 y_{ν} : Coupling Strength

R' : Flavor Stucture

